These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 38138382)

  • 1. A Rapid Prototyping Approach for Multi-Material, Reversibly Sealed Microfluidics.
    Halwes M; Stamp M; Collins DJ
    Micromachines (Basel); 2023 Dec; 14(12):. PubMed ID: 38138382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of four functional biocompatible pressure-sensitive adhesives for rapid prototyping of cell-based lab-on-a-chip and organ-on-a-chip systems.
    Kratz SRA; Eilenberger C; Schuller P; Bachmann B; Spitz S; Ertl P; Rothbauer M
    Sci Rep; 2019 Jun; 9(1):9287. PubMed ID: 31243326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-Resin Masked Stereolithography (MSLA) 3D Printing for Rapid and Inexpensive Prototyping of Microfluidic Chips with Integrated Functional Components.
    Ahmed I; Sullivan K; Priye A
    Biosensors (Basel); 2022 Aug; 12(8):. PubMed ID: 36005047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aerosol-jet printing facilitates the rapid prototyping of microfluidic devices with versatile geometries and precise channel functionalization.
    Ćatić N; Wells L; Al Nahas K; Smith M; Jing Q; Keyser UF; Cama J; Kar-Narayan S
    Appl Mater Today; 2020 Jun; 19():100618. PubMed ID: 33521242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Negligible-cost microfluidic device fabrication using 3D-printed interconnecting channel scaffolds.
    Felton H; Hughes R; Diaz-Gaxiola A
    PLoS One; 2021; 16(2):e0245206. PubMed ID: 33534849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid Manufacturing of Multilayered Microfluidic Devices for Organ on a Chip Applications.
    Paoli R; Di Giuseppe D; Badiola-Mateos M; Martinelli E; Lopez-Martinez MJ; Samitier J
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33669434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid Prototyping of Thermoplastic Microfluidic Devices.
    Novak R; Ng CF; Ingber DE
    Methods Mol Biol; 2018; 1771():161-170. PubMed ID: 29633212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconfigurable Acrylic-tape Hybrid Microfluidics.
    Ren Y; Ray S; Liu Y
    Sci Rep; 2019 Mar; 9(1):4824. PubMed ID: 30886239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Materials for microfluidic chip fabrication.
    Ren K; Zhou J; Wu H
    Acc Chem Res; 2013 Nov; 46(11):2396-406. PubMed ID: 24245999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic pressure in paper (μPiP): rapid prototyping and low-cost liquid handling for on-chip diagnostics.
    Islam MN; Yost JW; Gagnon ZR
    Analyst; 2022 Feb; 147(4):587-596. PubMed ID: 35037668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid prototyping for high-pressure microfluidics.
    Rein C; Toner M; Sevenler D
    Sci Rep; 2023 Jan; 13(1):1232. PubMed ID: 36683072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-cost rapid prototyping and assembly of an open microfluidic device for a 3D vascularized organ-on-a-chip.
    Li Q; Niu K; Wang D; Xuan L; Wang X
    Lab Chip; 2022 Jul; 22(14):2682-2694. PubMed ID: 34581377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasma free reversible and irreversible microfluidic bonding.
    Chu M; Nguyen TT; Lee EK; Morival JL; Khine M
    Lab Chip; 2017 Jan; 17(2):267-273. PubMed ID: 27990540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D-printed microfluidic devices.
    Amin R; Knowlton S; Hart A; Yenilmez B; Ghaderinezhad F; Katebifar S; Messina M; Khademhosseini A; Tasoglu S
    Biofabrication; 2016 Jun; 8(2):022001. PubMed ID: 27321137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of Hard-Soft Microfluidic Devices Using Hybrid 3D Printing.
    Ruiz C; Kadimisetty K; Yin K; Mauk MG; Zhao H; Liu C
    Micromachines (Basel); 2020 Jun; 11(6):. PubMed ID: 32492980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Demonstration of a Transparent and Adhesive Sealing Top for Microfluidic Lab-Chip Applications.
    Agarwal A; Salahuddin A; Ahamed MJ
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Open-Source Wax RepRap 3-D Printer for Rapid Prototyping Paper-Based Microfluidics.
    Pearce JM; Anzalone NC; Heldt CL
    J Lab Autom; 2016 Aug; 21(4):510-6. PubMed ID: 26763294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D microfluidics via cyclic olefin polymer-based in situ direct laser writing.
    Alsharhan AT; Acevedo R; Warren R; Sochol RD
    Lab Chip; 2019 Sep; 19(17):2799-2810. PubMed ID: 31334525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D Printing Solutions for Microfluidic Chip-To-World Connections.
    van den Driesche S; Lucklum F; Bunge F; Vellekoop MJ
    Micromachines (Basel); 2018 Feb; 9(2):. PubMed ID: 30393347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cost-effective rapid prototyping and assembly of poly(methyl methacrylate) microfluidic devices.
    Matellan C; Del Río Hernández AE
    Sci Rep; 2018 May; 8(1):6971. PubMed ID: 29725034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.