These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38138391)

  • 1. Development of a 3-DOF Angle Sensor Based on a Single Laser Interference Probe.
    Yu L; Feng X; Hu P; Lin X; Jing T
    Micromachines (Basel); 2023 Dec; 14(12):. PubMed ID: 38138391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-degree-of-freedom autocollimator based on a combined target reflector.
    Guo Y; Cheng H; Wen Y; Feng Y
    Appl Opt; 2020 Mar; 59(8):2262-2269. PubMed ID: 32225756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-degree-of-freedom autocollimation angle measurement method based on crosshair displacement and rotation.
    Guo Y; Cheng H; Liu G
    Rev Sci Instrum; 2023 Jan; 94(1):015108. PubMed ID: 36725544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Targetless Method for Simultaneously Measuring Three-Degree-of-Freedom Angular Motion Errors with Digital Speckle Pattern Interferometry.
    Shi L; Wu S; Yan M; Niu H
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A three-dimensional small angle measurement system based on autocollimation method.
    Ren W; Cui J; Tan J
    Rev Sci Instrum; 2022 May; 93(5):055102. PubMed ID: 35649758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a compact, fiber-coupled, six degree-of-freedom measurement system for precision linear stage metrology.
    Yu X; Gillmer SR; Woody SC; Ellis JD
    Rev Sci Instrum; 2016 Jun; 87(6):065109. PubMed ID: 27370499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low cost, compact 4-DOF measurement system with active compensation of beam angular drift error.
    Huang Y; Fan KC; Sun W; Liu S
    Opt Express; 2018 Jun; 26(13):17185-17198. PubMed ID: 30119533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High resolution and stability roll angle measurement method for precision linear displacement stages.
    Jin T; Xia G; Hou W; Le Y; Han S
    Rev Sci Instrum; 2017 Feb; 88(2):023102. PubMed ID: 28249520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decoupling and detecting angular motion errors based on a line laser sensor for motion platforms.
    Chen C; Zhang H; Chen S; Liu B; Zhang K; Ji H
    Appl Opt; 2020 Jan; 59(2):500-507. PubMed ID: 32225326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D Position Tracking using On-chip Magnetic Sensing in Image-guided Navigation Bronchoscopy.
    Srivastava M; ODonoghue K; Sidun A; Jaeger HA; Ferro A; Crowley D; van den Bosch C; Kennedy M; OHare D; Cantillon-Murphy P
    IEEE Trans Biomed Circuits Syst; 2024 Apr; PP():. PubMed ID: 38568765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Novel Method for Estimating Pitch and Yaw of Rotating Projectiles Based on Dynamic Constraints.
    An L; Wang L; Liu N; Fu J; Zhong Y
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31766454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laser homodyne straightness interferometer with simultaneous measurement of six degrees of freedom motion errors for precision linear stage metrology.
    Lou Y; Yan L; Chen B; Zhang S
    Opt Express; 2017 Mar; 25(6):6805-6821. PubMed ID: 28381023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-compensation method for dual-beam roll angle measurement of linear stages.
    Fan Y; Lou Z; Huang Y; Fan KC
    Opt Express; 2021 Aug; 29(17):26340-26352. PubMed ID: 34615071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crosstalk decoupling measurement method to determine the six degrees of freedom of motion error of linear stages.
    Diao K; Chen C; Leach R; Liu X; Lu W; Yang W
    Appl Opt; 2022 Feb; 61(6):1284-1291. PubMed ID: 35201007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of a Measurement System for Six-Degree-of-Freedom Geometric Errors of a Linear Guide of a Machine Tool.
    Liu CS; Lai JJ; Luo YT
    Sensors (Basel); 2018 Dec; 19(1):. PubMed ID: 30577462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Precision roll angle measurement system based on autocollimation.
    Ren W; Cui J; Tan J
    Appl Opt; 2022 May; 61(13):3811-3818. PubMed ID: 36256424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional vector analysis of the human vestibuloocular reflex in response to high-acceleration head rotations. I. Responses in normal subjects.
    Aw ST; Haslwanter T; Halmagyi GM; Curthoys IS; Yavor RA; Todd MJ
    J Neurophysiol; 1996 Dec; 76(6):4009-20. PubMed ID: 8985896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Is Halcyon feasible for single thoracic or lumbar vertebral segment SBRT?
    Li F; Park J; Lalonde R; Jang SY; diMayorca MS; Flickinger JC; Keller A; Huq MS
    J Appl Clin Med Phys; 2022 Jan; 23(1):e13458. PubMed ID: 34845817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design, fabrication, and verification of a three-dimensional autocollimator.
    Yin Y; Cai S; Qiao Y
    Appl Opt; 2016 Dec; 55(35):9986-9991. PubMed ID: 27958401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distance-to-agreement investigation of Tomotherapy's bony anatomy-based autoregistration and planning target volume contour-based optimization.
    Suh S; Schultheiss TE
    Int J Radiat Oncol Biol Phys; 2013 Mar; 85(3):862-5. PubMed ID: 22836060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.