These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38138394)

  • 1. High-Bandwidth Heterodyne Laser Interferometer for the Measurement of High-Intensity Focused Ultrasound Pressure.
    Wang K; Xing G; Yang P; Wang M; Wang Z; Tian Q
    Micromachines (Basel); 2023 Dec; 14(12):. PubMed ID: 38138394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of airborne transducers by optical tomography.
    Bou Matar O ; Pizarro L; Certon D; Remenieras JP; Patat F
    Ultrasonics; 2000 Mar; 38(1-8):787-93. PubMed ID: 10829772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of ultrasonic pressure by heterodyne interferometry with a fiber-tip sensor.
    Koch C
    Appl Opt; 1999 May; 38(13):2812-9. PubMed ID: 18319859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of the frequency response of the photodetector on the heterodyne interferometer-based sound pressure standards in water.
    Feng X; Yang P; He L; Wang M; Xing G
    Appl Opt; 2018 Nov; 57(32):9635-9642. PubMed ID: 30461744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward virtual biopsy through an all fiber optic ultrasonic miniaturized transducer: a proposal.
    Acquafresca A; Biagi E; Masotti L; Menichelli D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Oct; 50(10):1325-35. PubMed ID: 14609072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calibration of high-frequency hydrophone up to 40 MHz by heterodyne interferometer.
    Yang P; Xing G; He L
    Ultrasonics; 2014 Jan; 54(1):402-7. PubMed ID: 23932658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved heterodyne system using double-passed acousto-optic frequency shifters for measuring the frequency response of photodetectors in ultrasonic applications.
    Feng X; Yang P; He L; Xing G; Wang M; Ke W
    Opt Express; 2020 Feb; 28(4):4387-4397. PubMed ID: 32121676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superheterodyne configuration for two-wavelength interferometry applied to absolute distance measurement.
    Le Floch S; Salvadé Y; Droz N; Mitouassiwou R; Favre P
    Appl Opt; 2010 Feb; 49(4):714-7. PubMed ID: 20119024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation and Mitigation of Noise Contributions in a Compact Heterodyne Interferometer.
    Zhang Y; Hines AS; Valdes G; Guzman F
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterodyne wavelength meter for continuous-wave lasers.
    Wang X; Li Y; Zhang S
    Appl Opt; 2007 Aug; 46(23):5631-4. PubMed ID: 17694109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Novel Analog Interpolation Method for Heterodyne Laser Interferometer.
    Chang CP; Chang SC; Wang YC; He PY
    Micromachines (Basel); 2023 Mar; 14(3):. PubMed ID: 36985103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bench testing of a heterodyne CO
    Akiyama T; Van Zeeland MA; Boivin RL; Carlstrom TN; Chavez JA; Muscatello CM; O'Neill RC; Vasquez J; Watkins M; Martin W; Colio A; Finkenthal DK; Brower DL; Chen J; Ding WX; Perry M
    Rev Sci Instrum; 2016 Dec; 87(12):123502. PubMed ID: 28040946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Space position measurement using long-path heterodyne interferometer with optical frequency comb.
    Wang X; Takahashi S; Takamasu K; Matsumoto H
    Opt Express; 2012 Jan; 20(3):2725-32. PubMed ID: 22330509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microchip Nd:YAG dual-frequency laser interferometer for displacement measurement.
    Chen H; Zhang S
    Opt Express; 2021 Feb; 29(4):6248-6256. PubMed ID: 33726150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coherent multi-heterodyne spectroscopy using acousto-optic frequency combs.
    Durán V; Schnébelin C; Guillet de Chatellus H
    Opt Express; 2018 May; 26(11):13800-13809. PubMed ID: 29877427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A heterodyne straightness and displacement measuring interferometer with laser beam drift compensation for long-travel linear stage metrology.
    Chen B; Cheng L; Yan L; Zhang E; Lou Y
    Rev Sci Instrum; 2017 Mar; 88(3):035114. PubMed ID: 28372378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure.
    Morris P; Hurrell A; Shaw A; Zhang E; Beard P
    J Acoust Soc Am; 2009 Jun; 125(6):3611-22. PubMed ID: 19507943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental comparison of autodyne and heterodyne laser interferometry using an Nd:YVO₄ microchip laser.
    Jacquin O; Lacot E; Glastre W; Hugon O; Guillet de Chatellus H
    J Opt Soc Am A Opt Image Sci Vis; 2011 Aug; 28(8):1741-6. PubMed ID: 21811337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design for A Highly Stable Laser Source Based on the Error Model of High-Speed High-Resolution Heterodyne Interferometers.
    Yang H; Yin Z; Yang R; Hu P; Li J; Tan J
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32079268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A dual-heterodyne laser interferometer for simultaneous measurement of linear and angular displacements.
    Yan H; Duan HZ; Li LT; Liang YR; Luo J; Yeh HC
    Rev Sci Instrum; 2015 Dec; 86(12):123102. PubMed ID: 26724001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.