BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 38138482)

  • 1. Facile Construction of Advanced 1D Metal-Organic Coordination Polymer for Efficient Lithium Storage.
    Du J; Liu X; Li B
    Molecules; 2023 Dec; 28(24):. PubMed ID: 38138482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transition-Metal-Triggered High-Efficiency Lithium Ion Storage via Coordination Interactions with Redox-Active Croconate in One-Dimensional Metal-Organic Anode Materials.
    Zhang L; Cheng F; Shi W; Chen J; Cheng P
    ACS Appl Mater Interfaces; 2018 Feb; 10(7):6398-6406. PubMed ID: 29383935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple Active Sites: Lithium Storage Mechanism of Cu-TCNQ as an Anode Material for Lithium-Ion Batteries.
    Meng C; Chen T; Fang C; Huang Y; Hu P; Tong Y; Bian T; Zhang J; Wang Z; Yuan A
    Chem Asian J; 2019 Dec; 14(23):4289-4295. PubMed ID: 31612624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid thermal deposited GeSe nanowires as a promising anode material for lithium-ion and sodium-ion batteries.
    Wang K; Liu M; Huang D; Li L; Feng K; Zhao L; Li J; Jiang F
    J Colloid Interface Sci; 2020 Jul; 571():387-397. PubMed ID: 32213356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-pot synthesis of hierarchical Co
    Wang Y; Xie W; Li D; Han P; Shi L; Luo Y; Cong G; Li C; Yu J; Zhu C; Xu J
    Sci Bull (Beijing); 2020 Sep; 65(17):1460-1469. PubMed ID: 36747403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-Pot Synthesis of Co-Based Coordination Polymer Nanowire for Li-Ion Batteries with Great Capacity and Stable Cycling Stability.
    Wang P; Lou X; Li C; Hu X; Yang Q; Hu B
    Nanomicro Lett; 2018; 10(2):19. PubMed ID: 30393668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Conjugated Coordination Polymer with Benzoquinone as Electrode Material for All Organic Symmetric Lithium-ion Batteries.
    Liang C; Cai X; Lin J; Chen Y; Xie Y; Liu Y
    Chempluschem; 2024 May; 89(5):e202300620. PubMed ID: 38052722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile synthesis of one-dimensional vanadyl acetate nanobelts toward a novel anode for lithium storage.
    Wen N; Chen S; Li X; Zhang K; Feng J; Zhou Z; Fan Q; Kuang Q; Dong Y; Zhao Y
    Dalton Trans; 2021 Sep; 50(33):11568-11578. PubMed ID: 34351346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-Assembled Framework Formed During Lithiation of SnS
    Yin K; Zhang M; Hood ZD; Pan J; Meng YS; Chi M
    Acc Chem Res; 2017 Jul; 50(7):1513-1520. PubMed ID: 28682057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superlithiated Polydopamine Derivative for High-Capacity and High-Rate Anode for Lithium-Ion Batteries.
    Dong X; Ding B; Guo H; Dou H; Zhang X
    ACS Appl Mater Interfaces; 2018 Nov; 10(44):38101-38108. PubMed ID: 30360056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Steering lithium and potassium storage mechanism in covalent organic frameworks by incorporating transition metal single atoms.
    Cao Y; Xu Q; Sun Y; Shi J; Xu Y; Tang Y; Chen X; Yang S; Jiang Z; Um HD; Li X; Wang Y
    Proc Natl Acad Sci U S A; 2024 Mar; 121(13):e2315407121. PubMed ID: 38502699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Performance Li-Organic Batteries Based on Conjugated and Nonconjugated Schiff-Base Polymer Anode Materials.
    Zhang J; Mu X; Mu Y
    ACS Omega; 2024 Mar; 9(11):12967-12975. PubMed ID: 38524458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advanced 1D Metal-Organic Coordination Polymer for Lithium-Ion Batteries: Designing, Synthesis, and Working Mechanism.
    Wu Y; Lai M; Liang J; Liang J; Zhang D; Zeng R; Li J; Xu Z; Chuangchanh P; Du M; Wu XL
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):1452-1462. PubMed ID: 36583528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrogen and sulfur co-doped vanadium carbide MXene for highly reversible lithium-ion storage.
    Zhang Y; Li J; Gong Z; Xie J; Lu T; Pan L
    J Colloid Interface Sci; 2021 Apr; 587():489-498. PubMed ID: 33387843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal-Organic Framework Glass Anode with an Exceptional Cycling-Induced Capacity Enhancement for Lithium-Ion Batteries.
    Gao C; Jiang Z; Qi S; Wang P; Jensen LR; Johansen M; Christensen CK; Zhang Y; Ravnsbaek DB; Yue Y
    Adv Mater; 2022 Mar; 34(10):e2110048. PubMed ID: 34969158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cobalt- and Cadmium-Based Metal-Organic Frameworks as High-Performance Anodes for Sodium Ion Batteries and Lithium Ion Batteries.
    Dong C; Xu L
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7160-7168. PubMed ID: 28166402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-Dimensional Zinc-Based Coordination Polymer as a Higher Capacity Anode Material for Lithium Ion Batteries.
    Song Y; Yu L; Gao Y; Shi C; Cheng M; Wang X; Liu HJ; Liu Q
    Inorg Chem; 2017 Oct; 56(19):11603-11609. PubMed ID: 28933831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium-ion batteries.
    Huang G; Zhang F; Du X; Qin Y; Yin D; Wang L
    ACS Nano; 2015 Feb; 9(2):1592-9. PubMed ID: 25629650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hollow Core-Shell SnO2/C Fibers as Highly Stable Anodes for Lithium-Ion Batteries.
    Zhou D; Song WL; Fan LZ
    ACS Appl Mater Interfaces; 2015 Sep; 7(38):21472-8. PubMed ID: 26348195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Boosting the Lithium-Ion Transport Kinetics of Sn-Based Coordination Polymers through Ligand Aromaticity Manipulation.
    Jiang J; Zhang R; Sun T; Guo J; Liu J; Cheng P; Shi W
    Inorg Chem; 2023 Oct; 62(40):16609-16616. PubMed ID: 37767995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.