BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 38138586)

  • 1. Prediction of Thermostability of Enzymes Based on the Amino Acid Index (AAindex) Database and Machine Learning.
    Li G; Jia L; Wang K; Sun T; Huang J
    Molecules; 2023 Dec; 28(24):. PubMed ID: 38138586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Machine Learning Study on the Thermostability Prediction of (R)-
    Jia LL; Sun TT; Wang Y; Shen Y
    Biomed Res Int; 2021; 2021():2593748. PubMed ID: 34447850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Deletion of a dynamic surface loop improves thermostability of (R)-selective amine transaminase from Aspergillus terreus].
    Xie D; Lv C; Fang H; Yang W; Hu S; Zhao W; Huang J; Mei L
    Sheng Wu Gong Cheng Xue Bao; 2017 Dec; 33(12):1923-1933. PubMed ID: 29271170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A machine learning approach for reliable prediction of amino acid interactions and its application in the directed evolution of enantioselective enzymes.
    Cadet F; Fontaine N; Li G; Sanchis J; Ng Fuk Chong M; Pandjaitan R; Vetrivel I; Offmann B; Reetz MT
    Sci Rep; 2018 Nov; 8(1):16757. PubMed ID: 30425279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering thermostable (R)-selective amine transaminase from Aspergillus terreus through in silico design employing B-factor and folding free energy calculations.
    Huang J; Xie DF; Feng Y
    Biochem Biophys Res Commun; 2017 Jan; 483(1):397-402. PubMed ID: 28017723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Turning thermostability of Aspergillus terreus (R)-selective transaminase At-ATA by synthetic shuffling.
    Fan F; Liu C; Cao J; Lyu C; Qiu S; Hu S; Sun T; Mei J; Wang H; Li Y; Zhao W; Mei L; Huang J
    J Biotechnol; 2023 Feb; 364():66-74. PubMed ID: 36708998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving thermostability of (R)-selective amine transaminase from Aspergillus terreus through introduction of disulfide bonds.
    Xie DF; Fang H; Mei JQ; Gong JY; Wang HP; Shen XY; Huang J; Mei LH
    Biotechnol Appl Biochem; 2018 Mar; 65(2):255-262. PubMed ID: 28639260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine Learning Enables Selection of Epistatic Enzyme Mutants for Stability Against Unfolding and Detrimental Aggregation.
    Li G; Qin Y; Fontaine NT; Ng Fuk Chong M; Maria-Solano MA; Feixas F; Cadet XF; Pandjaitan R; Garcia-Borràs M; Cadet F; Reetz MT
    Chembiochem; 2021 Mar; 22(5):904-914. PubMed ID: 33094545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel Descriptors and Digital Signal Processing- Based Method for Protein Sequence Activity Relationship Study.
    Fontaine NT; Cadet XF; Vetrivel I
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31718061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Single Mutation Increases the Thermostability and Activity of
    Zhu WL; Hu S; Lv CJ; Zhao WR; Wang HP; Mei JQ; Mei LH; Huang J
    Molecules; 2019 Mar; 24(7):. PubMed ID: 30934681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semi-rational design and molecular dynamics simulations study of the thermostability enhancement of cellobiose 2-epimerases.
    Chen Q; Xiao Y; Shakhnovich EI; Zhang W; Mu W
    Int J Biol Macromol; 2020 Jul; 154():1356-1365. PubMed ID: 31733243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering Clostridium absonum 7α-hydroxysteroid Dehydrogenase for Enhancing Thermostability Based on Flexible Site and ΔΔG Prediction.
    Lou D; Tan J; Zhu L; Ji S; Tang S; Yao K; Han J; Wang B
    Protein Pept Lett; 2018; 25(3):230-235. PubMed ID: 29141528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of stabilized (R)-selective amine transaminase from Aspergillus terreus by consensus mutagenesis.
    Xie DF; Yang JX; Lv CJ; Mei JQ; Wang HP; Hu S; Zhao WR; Cao JR; Tu JL; Huang J; Mei LH
    J Biotechnol; 2019 Mar; 293():8-16. PubMed ID: 30703468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering the Enantioselectivity and Thermostability of a (+)-γ-Lactamase from Microbacterium hydrocarbonoxydans for Kinetic Resolution of Vince Lactam (2-Azabicyclo[2.2.1]hept-5-en-3-one).
    Gao S; Zhu S; Huang R; Li H; Wang H; Zheng G
    Appl Environ Microbiol; 2018 Jan; 84(1):. PubMed ID: 29054871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rational Design of Thermostable Carbonic Anhydrase Mutants Using Molecular Dynamics Simulations.
    Parra-Cruz R; Jäger CM; Lau PL; Gomes RL; Pordea A
    J Phys Chem B; 2018 Sep; 122(36):8526-8536. PubMed ID: 30114369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning-assisted enzyme engineering.
    Siedhoff NE; Schwaneberg U; Davari MD
    Methods Enzymol; 2020; 643():281-315. PubMed ID: 32896285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving the Thermostability and Activity of Transaminase From
    Cao JR; Fan FF; Lv CJ; Wang HP; Li Y; Hu S; Zhao WR; Chen HB; Huang J; Mei LH
    Front Chem; 2021; 9():664156. PubMed ID: 33937200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced thermostability of methyl parathion hydrolase from Ochrobactrum sp. M231 by rational engineering of a glycine to proline mutation.
    Tian J; Wang P; Gao S; Chu X; Wu N; Fan Y
    FEBS J; 2010 Dec; 277(23):4901-8. PubMed ID: 20977676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of protein thermostability by three consecutive mutations using loop-walking method and machine learning.
    Yoshida K; Kawai S; Fujitani M; Koikeda S; Kato R; Ema T
    Sci Rep; 2021 Jun; 11(1):11883. PubMed ID: 34088952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing Machine-Learning Prediction of Enzyme Catalytic Temperature Optima through Amino Acid Conservation Analysis.
    Cao Y; Qiu B; Ning X; Fan L; Qin Y; Yu D; Yang C; Ma H; Liao X; You C
    Int J Mol Sci; 2024 Jun; 25(11):. PubMed ID: 38892439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.