BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38138591)

  • 1. Study on the Influence of CaO on the Electrochemical Reduction of Fe
    Li H; Song L; Liang J; Huo D; Cao W; Liu C
    Molecules; 2023 Dec; 28(24):. PubMed ID: 38138591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pure and Metal-confining Carbon Nanotubes through Electrochemical Reduction of Carbon Dioxide in Ca-based Molten Salts.
    Cao J; Jing S; Wang H; Xu W; Zhang M; Xiao J; Peng Y; Ning X; Wang Z; Xiao W
    Angew Chem Int Ed Engl; 2023 Aug; 62(31):e202306877. PubMed ID: 37278885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct Conversion of Greenhouse Gas CO2 into Graphene via Molten Salts Electrolysis.
    Hu L; Song Y; Jiao S; Liu Y; Ge J; Jiao H; Zhu J; Wang J; Zhu H; Fray DJ
    ChemSusChem; 2016 Mar; 9(6):588-94. PubMed ID: 26871684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical Mechanism of Molten Salt Electrolysis from TiO
    Meng X; Zhao H; Bi S; Ju Z; Yang Z; Yang Y; Li H; Liang J
    Materials (Basel); 2022 Jun; 15(11):. PubMed ID: 35683254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on the Behavior of Electrochemical Extraction of Cobalt from Spent Lithium Cobalt Oxide Cathode Materials.
    Li H; Li H; Li C; Liang J; Yan H; Xu Z
    Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnesia-stabilised zirconia solid electrolyte assisted electrochemical investigation of iron ions in a SiO
    Gao Y; Yang C; Zhang C; Qin Q; Chen GZ
    Phys Chem Chem Phys; 2017 Jun; 19(24):15876-15890. PubMed ID: 28589201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Cathode Physical Properties on the Preparation of Fe
    Li H; Fu Y; Liang J; Yang Y
    Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical Mechanism of Recovery of Nickel Metal from Waste Lithium Ion Batteries by Molten Salt Electrolysis.
    Li H; Fu Y; Liang J; Li C; Wang J; Yan H; Cai Z
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insight into the Fe
    Hu Q; Wang CH
    Bioresour Technol; 2020 Aug; 310():123384. PubMed ID: 32335346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-Temperature Molten-Salt Production of Silicon Nanowires by the Electrochemical Reduction of CaSiO
    Dong Y; Slade T; Stolt MJ; Li L; Girard SN; Mai L; Jin S
    Angew Chem Int Ed Engl; 2017 Nov; 56(46):14453-14457. PubMed ID: 28952181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrolysis of metal oxides in MgCl2 based molten salts with an inert graphite anode.
    Yuan Y; Li W; Chen H; Wang Z; Jin X; Chen GZ
    Faraday Discuss; 2016 Aug; 190():85-96. PubMed ID: 27203663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anode electrolysis of sulfides.
    Qu J; Chen X; Xie H; Gao S; Wang D; Yin H
    Proc Natl Acad Sci U S A; 2022 Aug; 119(31):e2202884119. PubMed ID: 35878036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study on the electrodeposition of uranium in chloride molten salt.
    Wu P; Wang L; Wang J; Luo J; Lu Y; Song X; Liu J; Qin Y; Hou L; Ma J
    RSC Adv; 2024 Feb; 14(10):7031-7039. PubMed ID: 38414996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and Electrochemical Dissolution of a Soluble Uranium Oxycarbide Anode.
    Yang Z; Yang M; Shen Z; Song W; Li B
    Inorg Chem; 2023 Aug; 62(33):13512-13518. PubMed ID: 37540815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recovery of LiCoO
    Feng J; Zhang B; Du P; Yuan Y; Li M; Chen X; Guo Y; Xie H; Yin H
    iScience; 2023 Nov; 26(11):108097. PubMed ID: 37876797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anodic Electrolysis Strategy Enabled Fe/FeCl
    Zhang W; Li H; Ning X
    ACS Appl Mater Interfaces; 2024 Jun; 16(23):30545-30555. PubMed ID: 38828906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of Ti-Fe alloys
    Jiao H; Tian D; Tu J; Jiao S
    RSC Adv; 2018 May; 8(31):17575-17581. PubMed ID: 35539232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Influence of Cu and Al Additives on Reduction of Iron(III) Oxide: In Situ XRD and XANES Study.
    Bulavchenko OA; Vinokurov ZS; Saraev AA; Tsapina AM; Trigub AL; Gerasimov EY; Gladky AY; Fedorov AV; Yakovlev VA; Kaichev VV
    Inorg Chem; 2019 Apr; 58(8):4842-4850. PubMed ID: 30946575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Situ Pyrolysis Concerted Formation of Si/C Hybrids during Molten Salt Electrolysis of SiO
    Weng W; Zeng C; Xiao W
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9156-9163. PubMed ID: 30789694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnesium production by molten salt electrolysis with liquid tin cathode and multiple effect distillation.
    Telgerafchi AE; Rutherford M; Espinosa G; McArthur D; Masse N; Perrin B; Tang Z; Powell AC
    Front Chem; 2023; 11():1192202. PubMed ID: 37465359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.