These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38138653)

  • 1. Impact of Aggregate Grain Size on ASR-Induced Expansion.
    Zapała-Sławeta J
    Materials (Basel); 2023 Dec; 16(24):. PubMed ID: 38138653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined Influence of Lithium Nitrate and Metakaolin on the Reaction of Aggregate with Alkalis.
    Zapała-Sławeta J
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Durability of Blended Cements Made with Reactive Aggregates.
    Menéndez E; Sanjuán MÁ; García-Roves R; Argiz C; Recino H
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34072614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring of the Impact of Lithium Nitrate on the Alkali⁻aggregate Reaction Using Acoustic Emission Methods.
    Zapała-Sławeta J; Świt G
    Materials (Basel); 2018 Dec; 12(1):. PubMed ID: 30577603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quartzite Mining Waste: Diagnosis of ASR Alkali-Silica Reaction in Mortars and Portland Cement Concrete.
    Francklin I; Ribeiro RP; Corrêa FA
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Review on Alkali-Silica Reaction Evolution in Recycled Aggregate Concrete.
    Barreto Santos M; De Brito J; Santos Silva A
    Materials (Basel); 2020 Jun; 13(11):. PubMed ID: 32526866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of Alkali-Silica Reaction: Application to Sandstone.
    Yang Y; Deng M; Mo L; Li W
    Materials (Basel); 2024 Jun; 17(12):. PubMed ID: 38930330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation of Glaukonite Sandstone as a Result of Alkali-Silica Reactions in Cement Mortar.
    Czapik P
    Materials (Basel); 2018 May; 11(6):. PubMed ID: 29848958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Microstructure Simulation of Reactive Aggregate in Concrete from 2D Images as the Basis for ASR Simulation.
    Qiu X; Chen J; Deprez M; Cnudde V; Ye G; De Schutter G
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34071472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alkali-Silica Reactivity of High Density Aggregates for Radiation Shielding Concrete.
    Jóźwiak-Niedźwiedzka D; Glinicki MA; Gibas K; Baran T
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30445670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High resolution transmission soft X-ray microscopy of deterioration products developed in large concrete dams.
    Kurtis KE; Monteiro PJ; Brown JT; Meyer-Ilse W
    J Microsc; 1999 Dec; 196 (Pt 3)():288-98. PubMed ID: 10594769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alkali-silica reactions of mortars produced by using waste glass as fine aggregate and admixtures such as fly ash and Li2CO3.
    Topçu IB; Boğa AR; Bilir T
    Waste Manag; 2008; 28(5):878-84. PubMed ID: 17570652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of paste composition, aggregate mineralogy and temperature on the pore solution composition and the extent of ASR expansion.
    Bagheri M; Lothenbach B; Scrivener K
    Mater Struct; 2022; 55(7):192. PubMed ID: 36042909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blastfurnace Hybrid Cement with Waste Water Glass Activator: Alkali-Silica Reaction Study.
    Kalina L; Bílek V; Bradová L; Topolář L
    Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32824609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of Alkali-Silica Reaction Potential in Aggregates from Iran and Australia Using Thin-Section Petrography and Expansion Testing.
    Kazemi P; Nikudel MR; Khamehchiyan M; Giri P; Taheri S; Clark SM
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laser scanning confocal microscopy for in situ monitoring of alkali-silica reaction.
    Collins CL; Ideker JH; Kurtis KE
    J Microsc; 2004 Feb; 213(2):149-57. PubMed ID: 14731298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of Image Analysis to Identify Quartz Grains in Heavy Aggregates Susceptible to ASR in Radiation Shielding Concrete.
    Jóźwiak-Niedźwiedzka D; Jaskulski R; Glinicki MA
    Materials (Basel); 2016 Mar; 9(4):. PubMed ID: 28773362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of Cement Replacement with Fly Ash and Ground Sand with Different Fineness on Alkali-Silica Reaction of Mortar.
    Ramjan S; Tangchirapat W; Jaturapitakkul C; Chee Ban C; Jitsangiam P; Suwan T
    Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33804759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of Laboratory-Accelerated Aging Methods to Study Alkali-Silica Reaction and Reinforcement Corrosion on the Properties of Concrete.
    Attar A; Gencturk B; Aryan H; Wei J
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32717936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Damage Generated and Propagated by the AAR Reactive Aggregate from Kingston, Ontario, Canada.
    Trottier C; Sanchez LFM
    Materials (Basel); 2023 Dec; 17(1):. PubMed ID: 38204020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.