These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38138729)

  • 21. Sound focusing by a broadband acoustic Luneburg lens.
    Yuan B; Liu J; Long H; Cheng Y; Liu X
    J Acoust Soc Am; 2022 Mar; 151(3):2238. PubMed ID: 35364924
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Acoustic Supercoupling in a Zero-Compressibility Waveguide.
    Esfahlani H; Byrne MS; McDermott M; Alù A
    Research (Wash D C); 2019; 2019():2457870. PubMed ID: 31549050
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design and optimization of three-dimensional composite multilayer cylindrical pentamode metamaterials for controlling low frequency acoustic waves.
    Cai C; Wang X; Wang Q; Li M; He G; Wang Z; Qin Y
    Sci Rep; 2022 Apr; 12(1):5594. PubMed ID: 35379842
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microporous and Flexible Framework Acoustic Metamaterials for Sound Attenuation and Contrast Agent Applications.
    Miller QRS; Nune SK; Schaef HT; Jung KW; Denslow KM; Prowant MS; Martin PF; McGrail BP
    ACS Appl Mater Interfaces; 2018 Dec; 10(51):44226-44230. PubMed ID: 30543403
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Broadband thin sound absorber based on hybrid labyrinthine metastructures with optimally designed parameters.
    Gao YX; Lin YP; Zhu YF; Liang B; Yang J; Yang J; Cheng JC
    Sci Rep; 2020 Jul; 10(1):10705. PubMed ID: 32612130
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Extreme anisotropy and dispersion engineering in locally resonant acoustic metamaterials.
    Yves S; Alù A
    J Acoust Soc Am; 2021 Sep; 150(3):2040. PubMed ID: 34598606
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Progress of low-frequency sound absorption research utilizing intelligent materials and acoustic metamaterials.
    Chang L; Jiang A; Rao M; Ma F; Huang H; Zhu Z; Zhang Y; Wu Y; Li B; Hu Y
    RSC Adv; 2021 Nov; 11(60):37784-37800. PubMed ID: 35498066
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An efficient multiscale method for subwavelength transient analysis of acoustic metamaterials.
    Liupekevicius R; van Dommelen JAW; Geers MGD; Kouznetsova VG
    Philos Trans A Math Phys Eng Sci; 2024 Sep; 382(2279):20230368. PubMed ID: 39129408
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Unlocking Novel Ultralow-Frequency Band Gap: Assembled Cellular Metabarrier for Broadband Wave Isolation.
    Liang X; Zhang F; Jiang J; He C; Yang H
    Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36499816
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dispersionless Manipulation of Reflected Acoustic Wavefront by Subwavelength Corrugated Surface.
    Zhu YF; Zou XY; Li RQ; Jiang X; Tu J; Liang B; Cheng JC
    Sci Rep; 2015 Jun; 5():10966. PubMed ID: 26077772
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Broadband Focusing Acoustic Lens Based on Fractal Metamaterials.
    Song GY; Huang B; Dong HY; Cheng Q; Cui TJ
    Sci Rep; 2016 Oct; 6():35929. PubMed ID: 27782216
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biomimetic Coupling Structure Increases the Noise Friction and Sound Absorption Effect.
    Ma Y; Ye W
    Materials (Basel); 2023 Nov; 16(22):. PubMed ID: 38005078
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Broadening bandgaps in a multi-resonant piezoelectric metamaterial plate via bandgap merging phenomena.
    Li Y; Liu Z; Zhou H; Yi K; Zhu R
    Sci Rep; 2024 Jul; 14(1):16127. PubMed ID: 38997315
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials.
    Kaina N; Lemoult F; Fink M; Lerosey G
    Nature; 2015 Sep; 525(7567):77-81. PubMed ID: 26333466
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modulating Sound with Acoustic Metafiber Bundles.
    Xia JP; Sun HX; Yuan SQ
    Sci Rep; 2017 Aug; 7(1):8151. PubMed ID: 28811586
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Emission enhancement of sound emitters using an acoustic metamaterial cavity.
    Song K; Lee SH; Kim K; Hur S; Kim J
    Sci Rep; 2014 Mar; 4():4165. PubMed ID: 24584552
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Underwater acoustic metamaterials.
    Dong E; Cao P; Zhang J; Zhang S; Fang NX; Zhang Y
    Natl Sci Rev; 2023 Jun; 10(6):nwac246. PubMed ID: 37181091
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of Adjustable Parallel Helmholtz Acoustic Metamaterial for Broad Low-Frequency Sound Absorption Band.
    Yang X; Yang F; Shen X; Wang E; Zhang X; Shen C; Peng W
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079319
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Three-dimensional broadband omnidirectional acoustic ground cloak.
    Zigoneanu L; Popa BI; Cummer SA
    Nat Mater; 2014 Apr; 13(4):352-5. PubMed ID: 24608143
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Expanding the strong absorption band by impedance matched mosquito-coil-like acoustic metamaterials.
    Hou M; Wu J; Yang S; Wu JH; Ma F
    Rev Sci Instrum; 2020 Feb; 91(2):025102. PubMed ID: 32113386
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.