These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 38138774)
1. Effect of Nb Content and Second Heat Cycle Peak Temperatures on Toughness of X80 Pipeline Steel. Chen Y; Yang Y; He X; Chi Q; Qi L; Li W; Li X Materials (Basel); 2023 Dec; 16(24):. PubMed ID: 38138774 [TBL] [Abstract][Full Text] [Related]
2. Effect of Post-Weld Heat Treatment on Microstructure and Fracture Toughness of X80 Pipeline Steel Welded Joint. Wang X; Wang D; Dai L; Deng C; Li C; Wang Y; Shen K Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36233985 [TBL] [Abstract][Full Text] [Related]
3. Effect of H Wang X; Wang D; Deng C; Li C Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806582 [TBL] [Abstract][Full Text] [Related]
4. Precipitates in Nb and Nb-V microalloyed X80 pipeline steel. Li Z; Liu D; Zhang J; Tian W Microsc Microanal; 2013 Aug; 19 Suppl 5():62-5. PubMed ID: 23920176 [TBL] [Abstract][Full Text] [Related]
5. Influence of Vanadium Micro-Alloying on the Microstructure of Structural High Strength Steels Welded Joints. Stornelli G; Tselikova A; Mirabile Gattia D; Mortello M; Schmidt R; Sgambetterra M; Testani C; Zucca G; Di Schino A Materials (Basel); 2023 Apr; 16(7):. PubMed ID: 37049191 [TBL] [Abstract][Full Text] [Related]
6. Comparison of Fracture Toughness in the Coarse-Grain Heat-Affected Zone of X80 Pipelines Girth-Welded under Conventional and Ultra-Low Heat Input. Liu S; Ba L; Li C; Di X Materials (Basel); 2022 Nov; 15(21):. PubMed ID: 36363293 [TBL] [Abstract][Full Text] [Related]
7. Statistical Assessment of Fracture Toughness Results from the HAZ of X80 Pipeline FCAW Girth Weld. Chen H; Feng Q; Bi Y; Gao X; Dai L; Chi Q Materials (Basel); 2022 Sep; 15(17):. PubMed ID: 36079540 [TBL] [Abstract][Full Text] [Related]
8. Quantitative Correlation between Thermal Cycling and the Microstructures of X100 Pipeline Steel Laser-Welded Joints. Wang G; Wang J; Yin L; Hu H; Yao Z Materials (Basel); 2019 Dec; 13(1):. PubMed ID: 31887999 [TBL] [Abstract][Full Text] [Related]
9. The Evolution and Distribution of Microstructures in High-Energy Laser-Welded X100 Pipeline Steel. Wang G; Yin L; Yao Z; Wang J; Jiang S; Zhang Z; Zuo C Materials (Basel); 2019 May; 12(11):. PubMed ID: 31151237 [TBL] [Abstract][Full Text] [Related]
10. Stress-Corrosion-Cracking Sensitivity of the Sub-Zones in X80 Steel Welded Joints at Different Potentials. Zhang C; He Y; Zheng W Materials (Basel); 2024 Jul; 17(14):. PubMed ID: 39063773 [TBL] [Abstract][Full Text] [Related]
11. Effect of Niobium Content on the Microstructure and Mechanical Properties of Simulated Coarse-Grained Heat-Affected Zone (CGHAZ) of High-Strength Low-Alloy (HSLA) Steels. Yu H; Wu K; Dong B; Yu L; Liu J; Liu Z; Xiao D; Jing X; Liu H Materials (Basel); 2022 May; 15(9):. PubMed ID: 35591649 [TBL] [Abstract][Full Text] [Related]
12. Effect of Welding Peak Temperature on Microstructure and Impact Toughness of Heat-Affected Zone of Q690 High Strength Bridge Steel. Zhang Y; Xiao J; Liu W; Zhao A Materials (Basel); 2021 May; 14(11):. PubMed ID: 34072899 [TBL] [Abstract][Full Text] [Related]
13. Impact Toughness of Subzones in the Intercritical Heat-Affected Zone of Low-Carbon Bainitic Steel. Li Z; Zhao X; Shan D Materials (Basel); 2018 Jun; 11(6):. PubMed ID: 29882760 [TBL] [Abstract][Full Text] [Related]
14. Role of Reversed Austenite Behavior in Determining Microstructure and Toughness of Advanced Medium Mn Steel by Welding Thermal Cycle. Chen Y; Wang H; Cai H; Li J; Chen Y Materials (Basel); 2018 Oct; 11(11):. PubMed ID: 30380672 [TBL] [Abstract][Full Text] [Related]
15. Effect of Heat-Input on Microstructure and Toughness of CGHAZ in a High-Nb-Content Microalloyed HSLA Steel. Yu H; Wu K; Dong B; Liu J; Liu Z; Xiao D; Jin X; Liu H; Tai M Materials (Basel); 2022 May; 15(10):. PubMed ID: 35629615 [TBL] [Abstract][Full Text] [Related]
16. Effect of V Content and Heat Input on HAZ Softening of Deep-Sea Pipeline Steel. Li B; Liu Q; Jia S; Ren Y; Yang P Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160739 [TBL] [Abstract][Full Text] [Related]
17. Characterization of Microstructures and Fatigue Properties for Dual-Phase Pipeline Steels by Gleeble Simulation of Heat-Affected Zone. Zhao Z; Xu P; Cheng H; Miao J; Xiao F Materials (Basel); 2019 Jun; 12(12):. PubMed ID: 31226851 [TBL] [Abstract][Full Text] [Related]
18. Effect of Initial Microstructure on the Toughness of Coarse-Grained Heat-Affected Zone in a Microalloyed Steel. Shi M; Di M; Zhang J; Kannan R; Li J; Yuan X; Li L Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443282 [TBL] [Abstract][Full Text] [Related]
19. Influence of PWHT Parameters on the Mechanical Properties and Microstructural Behavior of Multi-Pass GTAW Joints of P92 Steel. Sirohi S; Kumar A; Soni S; Dak G; Kumar S; Świerczyńska A; Rogalski G; Fydrych D; Pandey C Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744119 [TBL] [Abstract][Full Text] [Related]
20. Effect of high welding heat input on the microstructure and low-temperature toughness of heat affected zone in magnesium-treated EH36 steel. Qi H; Pang Q; Li W; Bian S Sci Rep; 2024 Aug; 14(1):19459. PubMed ID: 39169232 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]