These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 38138823)

  • 1. Numerical and Experimental Analysis of Strength Loss of 1.2709 Maraging Steel Produced by Selective Laser Melting (SLM) under Thermo-Mechanical Fatigue Conditions.
    Piekło J; Garbacz-Klempka A; Myszka D; Figurski K
    Materials (Basel); 2023 Dec; 16(24):. PubMed ID: 38138823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Numerical Fatigue Life Analysis of a Conformal HPDC Mould Core Additively Manufactured from Maraging Steel.
    Piekło J; Garbacz-Klempka A; Burbelko A
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of Phenomenon of Plasticity Loss of Steel Core Made by Selective Laser Melting Method in Zone of Pressure Mould Conformal Cooling Channel.
    Piekło J; Garbacz-Klempka A
    Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance of Maraging Steel Sleeves Produced by SLM with Subsequent Age Hardening.
    Tyczyński P; Siemiątkowski Z; Bąk P; Warzocha K; Rucki M; Szumiata T
    Materials (Basel); 2020 Aug; 13(15):. PubMed ID: 32748836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of Maraging Steel 1.2709 for Implementing Parts of Pressure Mold Devices with Conformal Cooling System.
    Piekło J; Garbacz-Klempka A
    Materials (Basel); 2020 Dec; 13(23):. PubMed ID: 33291624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving the fatigue performance of porous metallic biomaterials produced by Selective Laser Melting.
    Van Hooreweder B; Apers Y; Lietaert K; Kruth JP
    Acta Biomater; 2017 Jan; 47():193-202. PubMed ID: 27717912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Comparison of the Structure and Selected Mechanical Properties of Cr/Co Alloys Obtained by Casting and Selective Laser Melting.
    Klimek L; Bułhak B; Śmielak B
    J Funct Biomater; 2024 Mar; 15(3):. PubMed ID: 38535254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of Maraging Steel Micro- and Nanostructure Produced Conventionally and by Laser Additive Manufacturing.
    Jägle EA; Sheng Z; Kürnsteiner P; Ocylok S; Weisheit A; Raabe D
    Materials (Basel); 2016 Dec; 10(1):. PubMed ID: 28772369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High Strength X3NiCoMoTi 18-9-5 Maraging Steel Prepared by Selective Laser Melting from Atomized Powder.
    Strakosova A; Kubásek J; Michalcová A; Průša F; Vojtěch D; Dvorský D
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31842323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microstructure and Fatigue Damage of 316L Stainless Steel Manufactured by Selective Laser Melting (SLM).
    Wang Z; Yang S; Huang Y; Fan C; Peng Z; Gao Z
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of Johnson-Cook Constitutive of 15-5 PH Steel Processed by Selective Laser Melting.
    Zhang X; Yao W; Zhu X; Hu Z; Zhu W; Huang H; Li W
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Characterization of Fatigue Damage of 316L Stainless Steel Parts Formed by Selective Laser Melting with Harmonic Generation Technique.
    Qiao R; Yan X
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tool Life Performance of Injection Mould Tooling Fabricated by Selective Laser Melting for High-Volume Production.
    Kashouty MFE; Rennie AEW; Ghazy M
    Materials (Basel); 2019 Nov; 12(23):. PubMed ID: 31779238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Air Permeability of Maraging Steel Cellular Parts Made by Selective Laser Melting.
    Dhinakar A; Li BE; Chang YC; Chiu KC; Chen JK
    Materials (Basel); 2021 Jun; 14(11):. PubMed ID: 34204144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of Different Additive Manufacturing Methods for 316L Stainless Steel.
    Bedmar J; Riquelme A; Rodrigo P; Torres B; Rams J
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34772039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of SLM Process in Terms of Temperature Distribution and Melting Pool Size: Modeling and Experimental Approaches.
    Ansari MJ; Nguyen DS; Park HS
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31003432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective Laser Melting of Maraging Steel Using Synchronized Three-Spot Scanning Strategies.
    Cheng CW; Jhang Jian WY; Makala BPR
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33920387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of Hybrid Joints by Selective Laser Melting of Maraging Tool Steel 1.2709 on Conventionally Produced Parts of the Same Steel.
    Kučerová L; Zetková I; Jeníček Š; Burdová K
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33919436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective Laser Melting of 18NI-300 Maraging Steel.
    Król M; Snopiński P; Hajnyš J; Pagáč M; Łukowiec D
    Materials (Basel); 2020 Sep; 13(19):. PubMed ID: 32992702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical Simulation of the Evaporation Behavior of Fe-Mn Heterogeneous Powder in Selective Laser Melting Process.
    Ma X; Hou Y; Liu H; Qiu H; Li X
    Materials (Basel); 2024 Apr; 17(9):. PubMed ID: 38730838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.