These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38138842)

  • 1. Medical-Radiation-Shielding Film Fabricated by Imitating the Layered Structure Pattern of Abalone Shell and Verification of Its Shielding Effect.
    Kim SC
    Materials (Basel); 2023 Dec; 16(24):. PubMed ID: 38138842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of ultra-thin radiation-shielding paper through nanofiber modeling of morpho butterfly wing structure.
    Kim SC; Byun H
    Sci Rep; 2022 Dec; 12(1):22532. PubMed ID: 36581765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tungsten-Based Hybrid Composite Shield for Medical Radioisotope Defense.
    Kim SC
    Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35207876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal Particle Pencil Beam Spray-Coating Method for High-Density Polymer-Resin Composites: Evaluation of Radiation-Shielding Sheet Properties.
    Kim SC
    Materials (Basel); 2023 Sep; 16(18):. PubMed ID: 37763369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manufacturing and performance evaluation of medical radiation shielding fiber with plasma thermal spray coating technology.
    Kim SC; Son JS
    Sci Rep; 2021 Nov; 11(1):22418. PubMed ID: 34789784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of the shielding ability of a tungsten functional paper for diagnostic x-rays and gamma rays.
    Monzen H; Kanno I; Fujimoto T; Hiraoka M
    J Appl Clin Med Phys; 2017 Sep; 18(5):325-329. PubMed ID: 28656739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Double-layered fiber for lightweight flexible clothing providing shielding from low-dose natural radiation.
    Kim SC; Son JS
    Sci Rep; 2021 Feb; 11(1):3676. PubMed ID: 33574471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly flexible and ultrathin electromagnetic-interference-shielding film with a sandwich structure based on PTFE@Cu and Ni@PVDF nanocomposite materials.
    Guo B; Liang J; Chen J; Zhao Y
    RSC Adv; 2022 Oct; 12(46):29688-29696. PubMed ID: 36321092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emission of fluorescent x-radiation from non-lead based shielding materials of protective clothing: a radiobiological problem?
    Schmid E; Panzer W; Schlattl H; Eder H
    J Radiol Prot; 2012 Sep; 32(3):N129-39. PubMed ID: 22809876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-efficiency, flexibility and lead-free X-ray shielding multilayered polymer composites: layered structure design and shielding mechanism.
    Li Z; Zhou W; Zhang X; Gao Y; Guo S
    Sci Rep; 2021 Feb; 11(1):4384. PubMed ID: 33623062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistic Strengthening of Mechanical Properties and Electromagnetic Interference Shielding Performance of Carbon Nanotubes (CNTs) Reinforced Magnesium Matrix Composites by CNTs Induced Laminated Structure.
    Sun Z; Shi H; Hu X; Yan M; Wang X
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly Transparent Ka-/W-Band Electromagnetic Shielding Films Based on Double-Layered Metal Meshes.
    Chung SI; Kang TW; Kim PK; Ha TG; Hong YP
    ACS Appl Mater Interfaces; 2023 Dec; 15(48):56612-56622. PubMed ID: 37988133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gamma-ray shielding characteristics of flexible silicone tungsten composites.
    Ahmed B; Shah GB; Malik AH; Aurangzeb ; Rizwan M
    Appl Radiat Isot; 2020 Jan; 155():108901. PubMed ID: 31655354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of tungsten sheet as an alternative for reducing the radiation dose behind the digital imaging plate during intra-oral radiography.
    Nagasaka T; Izumi M; Gotoh K; Kuwada T; Kise Y; Katsumata A; Ariji E
    Dentomaxillofac Radiol; 2019 Jan; 48(1):20180161. PubMed ID: 30028195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of air pressure mirroring particle dispersion method for producing high-density tungsten medical radiation shielding film.
    Kim SC
    Sci Rep; 2021 Jan; 11(1):485. PubMed ID: 33436699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyvinylidene Fluoride Core-Shell Nanofiber Membranes with Highly Conductive Shells for Electromagnetic Interference Shielding.
    Lee S; Park J; Kim MC; Kim M; Park P; Yoon IJ; Nah J
    ACS Appl Mater Interfaces; 2021 Jun; 13(21):25428-25437. PubMed ID: 34014068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Core-Multishell Heterostructure with Excellent Heat Dissipation for Electromagnetic Interference Shielding.
    Bhattacharjee Y; Chatterjee D; Bose S
    ACS Appl Mater Interfaces; 2018 Sep; 10(36):30762-30773. PubMed ID: 30106274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical Properties and Gamma-Ray Shielding Performance of 3D-Printed Poly-Ether-Ether-Ketone/Tungsten Composites.
    Wu Y; Cao Y; Wu Y; Li D
    Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33050304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Doping Sodium Tungsten Bronze-Like (Na
    Yang G; Hu D; Xia F; Yang C; Liu Y; He X; Shpotyuk Y; Chen H; Gao Y
    ACS Appl Mater Interfaces; 2022 Jul; 14(28):32206-32217. PubMed ID: 35786831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lead Free Multilayered Polymer Composites for Radiation Shielding.
    Gilys L; Griškonis E; Griškevičius P; Adlienė D
    Polymers (Basel); 2022 Apr; 14(9):. PubMed ID: 35566867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.