BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 38139147)

  • 1. Schwann Cell-Derived Exosomal Vesicles: A Promising Therapy for the Injured Spinal Cord.
    Ghosh M; Pearse DD
    Int J Mol Sci; 2023 Dec; 24(24):. PubMed ID: 38139147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of exosomes in central nervous system tissue regeneration and repair.
    Wang J; Yang L
    Biomed Mater; 2023 Jul; 18(5):. PubMed ID: 37399812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Schwann cell transplantation for spinal cord injury repair: its significant therapeutic potential and prospectus.
    Kanno H; Pearse DD; Ozawa H; Itoi E; Bunge MB
    Rev Neurosci; 2015; 26(2):121-8. PubMed ID: 25581750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Schwann cell transplantation for repair of the adult spinal cord.
    Oudega M; Xu XM
    J Neurotrauma; 2006; 23(3-4):453-67. PubMed ID: 16629629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Realizing the maximum potential of Schwann cells to promote recovery from spinal cord injury.
    Bunge MB; Wood PM
    Handb Clin Neurol; 2012; 109():523-40. PubMed ID: 23098734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficacy of Schwann cell transplantation for spinal cord repair is improved with combinatorial strategies.
    Bunge MB
    J Physiol; 2016 Jul; 594(13):3533-8. PubMed ID: 26876753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Schwann cell transplantation and descending propriospinal regeneration after spinal cord injury.
    Deng LX; Walker C; Xu XM
    Brain Res; 2015 Sep; 1619():104-14. PubMed ID: 25257034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advances in Management of Spinal Cord Injury Using Stem Cell-derived Extracellular Vesicles: A Review Study.
    Afsartala Z; Hadjighassem M; Shirian S; Ebrahimi-Barough S; Gholami L; Hussain MF; Yaghoobi M; Ai J
    Basic Clin Neurosci; 2023; 14(4):443-451. PubMed ID: 38050575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Schwann cells generated from neonatal skin-derived precursors or neonatal peripheral nerve improve functional recovery after acute transplantation into the partially injured cervical spinal cord of the rat.
    Sparling JS; Bretzner F; Biernaskie J; Assinck P; Jiang Y; Arisato H; Plunet WT; Borisoff J; Liu J; Miller FD; Tetzlaff W
    J Neurosci; 2015 Apr; 35(17):6714-30. PubMed ID: 25926450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cyclosporine-immunosuppression does not affect survival of transplanted skin-derived precursor Schwann cells in the injured rat spinal cord.
    May Z; Torres-Espín A; Lucas-Osma AM; Batty NJ; Raposo P; Fenrich KK; Stykel MG; Führmann T; Shoichet M; Biernaskie J; Fouad K
    Neurosci Lett; 2017 Sep; 658():67-72. PubMed ID: 28843345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A functionalized collagen-I scaffold delivers microRNA 21-loaded exosomes for spinal cord injury repair.
    Liu X; Zhang L; Xu Z; Xiong X; Yu Y; Wu H; Qiao H; Zhong J; Zhao Z; Dai J; Suo G
    Acta Biomater; 2022 Dec; 154():385-400. PubMed ID: 36270583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined effects of rat Schwann cells and 17β-estradiol in a spinal cord injury model.
    Namjoo Z; Moradi F; Aryanpour R; Piryaei A; Joghataei MT; Abbasi Y; Hosseini A; Hassanzadeh S; Taklimie FR; Beyer C; Zendedel A
    Metab Brain Dis; 2018 Aug; 33(4):1229-1242. PubMed ID: 29658057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scalable culture techniques to generate large numbers of purified human Schwann cells for clinical trials in human spinal cord and peripheral nerve injuries.
    Khan A; Diaz A; Brooks AE; Burks SS; Athauda G; Wood P; Lee YS; Silvera R; Donaldson M; Pressman Y; Anderson KD; Bunge MB; Pearse DD; Dietrich WD; Guest JD; Levi AD
    J Neurosurg Spine; 2022 Jan; 36(1):135-144. PubMed ID: 34479193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increasing toll-like receptor 2 on astrocytes induced by Schwann cell-derived exosomes promotes recovery by inhibiting CSPGs deposition after spinal cord injury.
    Pan D; Li Y; Yang F; Lv Z; Zhu S; Shao Y; Huang Y; Ning G; Feng S
    J Neuroinflammation; 2021 Aug; 18(1):172. PubMed ID: 34372877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From transplanting Schwann cells in experimental rat spinal cord injury to their transplantation into human injured spinal cord in clinical trials.
    Bunge MB; Monje PV; Khan A; Wood PM
    Prog Brain Res; 2017; 231():107-133. PubMed ID: 28554394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repair of the Injured Spinal Cord by Schwann Cell Transplantation.
    Fu H; Hu D; Chen J; Wang Q; Zhang Y; Qi C; Yu T
    Front Neurosci; 2022; 16():800513. PubMed ID: 35250447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clinical translation of autologous Schwann cell transplantation for the treatment of spinal cord injury.
    Guest J; Santamaria AJ; Benavides FD
    Curr Opin Organ Transplant; 2013 Dec; 18(6):682-9. PubMed ID: 24220051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeted Delivery of Mesenchymal Stem Cell-Derived Nanovesicles for Spinal Cord Injury Treatment.
    Lee JR; Kyung JW; Kumar H; Kwon SP; Song SY; Han IB; Kim BS
    Int J Mol Sci; 2020 Jun; 21(11):. PubMed ID: 32545361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. miR-146a-5p-modified hUCMSC-derived exosomes facilitate spinal cord function recovery by targeting neurotoxic astrocytes.
    Lai X; Wang Y; Wang X; Liu B; Rong L
    Stem Cell Res Ther; 2022 Sep; 13(1):487. PubMed ID: 36175984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuregulin-1 controls an endogenous repair mechanism after spinal cord injury.
    Bartus K; Galino J; James ND; Hernandez-Miranda LR; Dawes JM; Fricker FR; Garratt AN; McMahon SB; Ramer MS; Birchmeier C; Bennett DL; Bradbury EJ
    Brain; 2016 May; 139(Pt 5):1394-416. PubMed ID: 26993800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.