These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
374 related articles for article (PubMed ID: 38139240)
1. Surface Modification of Polylactic Acid Bioscaffold Fabricated via 3D Printing for Craniofacial Bone Tissue Engineering. Liu YC; Lo GJ; Shyu VB; Tsai CH; Chen CH; Chen CT Int J Mol Sci; 2023 Dec; 24(24):. PubMed ID: 38139240 [TBL] [Abstract][Full Text] [Related]
2. Stem Cell-Seeded 3D-Printed Scaffolds Combined with Self-Assembling Peptides for Bone Defect Repair. Xu H; Wang C; Liu C; Li J; Peng Z; Guo J; Zhu L Tissue Eng Part A; 2022 Feb; 28(3-4):111-124. PubMed ID: 34157886 [TBL] [Abstract][Full Text] [Related]
3. Fused Deposition Modeling Printed PLA/Nano β-TCP Composite Bone Tissue Engineering Scaffolds for Promoting Osteogenic Induction Function. Wang W; Liu P; Zhang B; Gui X; Pei X; Song P; Yu X; Zhang Z; Zhou C Int J Nanomedicine; 2023; 18():5815-5830. PubMed ID: 37869064 [TBL] [Abstract][Full Text] [Related]
4. Nuciferine-loaded chitosan hydrogel-integrated 3D-printed polylactic acid scaffolds for bone tissue engineering: A combinatorial approach. Bharathi R; Harini G; Sankaranarayanan A; Shanmugavadivu A; Vairamani M; Selvamurugan N Int J Biol Macromol; 2023 Dec; 253(Pt 7):127492. PubMed ID: 37858655 [TBL] [Abstract][Full Text] [Related]
5. The healing of bone defects by cell-free and stem cell-seeded 3D-printed PLA tissue-engineered scaffolds. Bahraminasab M; Talebi A; Doostmohammadi N; Arab S; Ghanbari A; Zarbakhsh S J Orthop Surg Res; 2022 Jun; 17(1):320. PubMed ID: 35725606 [TBL] [Abstract][Full Text] [Related]
6. 3D printed biocompatible graphene oxide, attapulgite, and collagen composite scaffolds for bone regeneration. Qin W; Li C; Liu C; Wu S; Liu J; Ma J; Chen W; Zhao H; Zhao X J Biomater Appl; 2022 May; 36(10):1838-1851. PubMed ID: 35196910 [TBL] [Abstract][Full Text] [Related]
7. Bone regeneration in rat calvarial defects using dissociated or spheroid mesenchymal stromal cells in scaffold-hydrogel constructs. Shanbhag S; Suliman S; Mohamed-Ahmed S; Kampleitner C; Hassan MN; Heimel P; Dobsak T; Tangl S; Bolstad AI; Mustafa K Stem Cell Res Ther; 2021 Nov; 12(1):575. PubMed ID: 34776000 [TBL] [Abstract][Full Text] [Related]
8. 3D printed porous PLA/nHA composite scaffolds with enhanced osteogenesis and osteoconductivity in vivo for bone regeneration. Chen X; Gao C; Jiang J; Wu Y; Zhu P; Chen G Biomed Mater; 2019 Sep; 14(6):065003. PubMed ID: 31382255 [TBL] [Abstract][Full Text] [Related]
9. Exosome-loaded hyaluronic acid hydrogel composite with oxygen-producing 3D printed polylactic acid scaffolds for bone tissue repair and regeneration. Zhang Y; Fang M; Zhu J; Li T; Li N; Su B; Sun GD; Li L; Zhou C Int J Biol Macromol; 2024 Aug; 274(Pt 1):132970. PubMed ID: 38876239 [TBL] [Abstract][Full Text] [Related]
10. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration. Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017 [TBL] [Abstract][Full Text] [Related]
11. Promoting neurovascularized bone regeneration with a novel 3D printed inorganic-organic magnesium silicate/PLA composite scaffold. Wang Z; Zheng B; Yu X; Shi Y; Zhou X; Gao B; He F; Tam MS; Wang H; Cheang LH; Zheng X; Wu T Int J Biol Macromol; 2024 Oct; 277(Pt 2):134185. PubMed ID: 39074694 [TBL] [Abstract][Full Text] [Related]
12. Synergistic large segmental bone repair by 3D printed bionic scaffolds and engineered ADSC nanovesicles: Towards an optimized regenerative microenvironment. Jiang W; Zhan Y; Zhang Y; Sun D; Zhang G; Wang Z; Chen L; Sun J Biomaterials; 2024 Jul; 308():122566. PubMed ID: 38603824 [TBL] [Abstract][Full Text] [Related]
13. 3D printed polylactic acid/gelatin-nano-hydroxyapatite/platelet-rich plasma scaffold for critical-sized skull defect regeneration. Bahraminasab M; Doostmohammadi N; Talebi A; Arab S; Alizadeh A; Ghanbari A; Salati A Biomed Eng Online; 2022 Dec; 21(1):86. PubMed ID: 36503442 [TBL] [Abstract][Full Text] [Related]
14. The 3D-Printed Ordered Bredigite Scaffold Promotes Pro-Healing of Critical-Sized Bone Defects by Regulating Macrophage Polarization. Xuan Y; Li L; Zhang C; Zhang M; Cao J; Zhang Z Int J Nanomedicine; 2023; 18():917-932. PubMed ID: 36844434 [TBL] [Abstract][Full Text] [Related]
15. 3D Printed Gelatin/Sodium Alginate Hydrogel Scaffolds Doped with Nano-Attapulgite for Bone Tissue Repair. Liu C; Qin W; Wang Y; Ma J; Liu J; Wu S; Zhao H Int J Nanomedicine; 2021; 16():8417-8432. PubMed ID: 35002236 [TBL] [Abstract][Full Text] [Related]
16. Osteoregenerative Potential of 3D-Printed Poly Lawrence LM; Salary RR; Miller V; Valluri A; Denning KL; Case-Perry S; Abdelgaber K; Smith S; Claudio PP; Day JB Int J Mol Sci; 2023 Mar; 24(5):. PubMed ID: 36902373 [TBL] [Abstract][Full Text] [Related]
17. Development of mussel-inspired 3D-printed poly (lactic acid) scaffold grafted with bone morphogenetic protein-2 for stimulating osteogenesis. Cheng CH; Chen YW; Kai-Xing Lee A; Yao CH; Shie MY J Mater Sci Mater Med; 2019 Jun; 30(7):78. PubMed ID: 31222566 [TBL] [Abstract][Full Text] [Related]
19. Metal Ion Augmented Mussel Inspired Polydopamine Immobilized 3D Printed Osteoconductive Scaffolds for Accelerated Bone Tissue Regeneration. Ghorai SK; Dutta A; Roy T; Guha Ray P; Ganguly D; Ashokkumar M; Dhara S; Chattopadhyay S ACS Appl Mater Interfaces; 2022 Jun; 14(25):28455-28475. PubMed ID: 35715225 [TBL] [Abstract][Full Text] [Related]
20. Fabrication of polylactic acid (PLA)-based porous scaffold through the combination of traditional bio-fabrication and 3D printing technology for bone regeneration. Zhou X; Zhou G; Junka R; Chang N; Anwar A; Wang H; Yu X Colloids Surf B Biointerfaces; 2021 Jan; 197():111420. PubMed ID: 33113493 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]