These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 38139512)

  • 1. An Innovative Collision-Free Image-Based Visual Servoing Method for Mobile Robot Navigation Based on the Path Planning in the Image Plan.
    Albekairi M; Mekki H; Kaaniche K; Yousef A
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parallel Image-Based Visual Servoing/Force Control of a Collaborative Delta Robot.
    Zhu M; Huang C; Qiu Z; Zheng W; Gong D
    Front Neurorobot; 2022; 16():922704. PubMed ID: 35721276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Target location method of intelligent deicing robot based on nonlinear auto disturbance rejection neural network.
    Kong L; Yi C
    Heliyon; 2024 May; 10(9):e29971. PubMed ID: 38707438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visual Servoing of Wheeled Mobile Robots Without Desired Images.
    Li B; Zhang X; Fang Y; Shi W
    IEEE Trans Cybern; 2019 Aug; 49(8):2835-2844. PubMed ID: 29994554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple-Target Homotopic Quasi-Complete Path Planning Method for Mobile Robot Using a Piecewise Linear Approach.
    Diaz-Arango G; Vazquez-Leal H; Hernandez-Martinez L; Jimenez-Fernandez VM; Heredia-Jimenez A; Ambrosio RC; Huerta-Chua J; De Cos-Cholula H; Hernandez-Mendez S
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32521754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Impact of LiDAR Configuration on Goal-Based Navigation within a Deep Reinforcement Learning Framework.
    Olayemi KB; Van M; McLoone S; McIlvanna S; Sun Y; Close J; Nguyen NM
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the Path-Tracking Accuracy of a Three-Wheeled Omnidirectional Mobile Robot Designed as a Personal Assistant.
    Palacín J; Rubies E; Clotet E; Martínez D
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uncalibrated and Unmodeled Image-Based Visual Servoing of Robot Manipulators Using Zeroing Neural Networks.
    Tan N; Yu P; Zheng W
    IEEE Trans Cybern; 2024 Apr; 54(4):2446-2459. PubMed ID: 37015421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Path Smoothing Techniques in Robot Navigation: State-of-the-Art, Current and Future Challenges.
    Ravankar A; Ravankar AA; Kobayashi Y; Hoshino Y; Peng CC
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30235894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Path Planning of Mobile Robot With Improved Ant Colony Algorithm and MDP to Produce Smooth Trajectory in Grid-Based Environment.
    Ali H; Gong D; Wang M; Dai X
    Front Neurorobot; 2020; 14():44. PubMed ID: 32733227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal Trajectory Planning for Wheeled Mobile Robots under Localization Uncertainty and Energy Efficiency Constraints.
    Zhang X; Huang Y; Rong Y; Li G; Wang H; Liu C
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33419009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Creating Better Collision-Free Trajectory for Robot Motion Planning by Linearly Constrained Quadratic Programming.
    Liu Y; Zha F; Li M; Guo W; Jia Y; Wang P; Zang Y; Sun L
    Front Neurorobot; 2021; 15():724116. PubMed ID: 34434099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Smooth Autonomous Patrolling for a Differential-Drive Mobile Robot in Dynamic Environments.
    Šelek A; Seder M; Petrović I
    Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37687877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ITC: Infused Tangential Curves for Smooth 2D and 3D Navigation of Mobile Robots
    Ravankar A; Ravankar AA; Rawankar A; Hoshino Y; Kobayashi Y
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31658781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Efficient Online Trajectory Generation Method Based on Kinodynamic Path Search and Trajectory Optimization for Human-Robot Interaction Safety.
    Liu H; Qu D; Xu F; Du Z; Jia K; Liu M
    Entropy (Basel); 2022 May; 24(5):. PubMed ID: 35626537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 6-DOF Pose Estimation of a Robotic Navigation Aid by Tracking Visual and Geometric Features.
    Ye C; Hong S; Tamjidi A
    IEEE Trans Autom Sci Eng; 2015 Oct; 12(4):1169-1180. PubMed ID: 26924949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Generalized Laser Simulator Algorithm for Mobile Robot Path Planning with Obstacle Avoidance.
    Muhammad A; Ali MAH; Turaev S; Abdulghafor R; Shanono IH; Alzaid Z; Alruban A; Alabdan R; Dutta AK; Almotairi S
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Safe Trajectory Planning for Incremental Robots Based on a Spatiotemporal Variable-Step-Size A* Algorithm.
    Hu H; Wen X; Hu J; Chen H; Xia C; Zhang H
    Sensors (Basel); 2024 Jun; 24(11):. PubMed ID: 38894430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The integration of GPS and visual navigation for autonomous navigation of an Ackerman steering mobile robot in cotton fields.
    Mwitta C; Rains GC
    Front Robot AI; 2024; 11():1359887. PubMed ID: 38680621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autonomous Navigation System of Greenhouse Mobile Robot Based on 3D Lidar and 2D Lidar SLAM.
    Jiang S; Wang S; Yi Z; Zhang M; Lv X
    Front Plant Sci; 2022; 13():815218. PubMed ID: 35360319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.