These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38139519)

  • 1. Wind Energy Harvesting with Vertically Aligned Piezoelectric Inverted Flags.
    Yang K; Cioncolini A; Revell A; Nabawy MRA
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance Evaluation of a Piezoelectric Energy Harvester Based on Flag-Flutter.
    Elahi H; Eugeni M; Fune F; Lampani L; Mastroddi F; Paolo Romano G; Gaudenzi P
    Micromachines (Basel); 2020 Oct; 11(10):. PubMed ID: 33066434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flapping dynamics of an inverted flag behind a cylinder.
    Ojo O; Kohtanen E; Jiang A; Brody J; Erturk A; Shoele K
    Bioinspir Biomim; 2022 Oct; 17(6):. PubMed ID: 36179696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study on the Critical Wind Speed of a Resonant Cavity Piezoelectric Energy Harvester Driven by Driving Wind Pressure.
    Li X; Li Z; Liu Q; Shan X
    Micromachines (Basel); 2019 Dec; 10(12):. PubMed ID: 31805751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Array of Flag-Type Triboelectric Nanogenerators for Harvesting Wind Energy.
    Zhao Z; Wei B; Wang Y; Huang X; Li B; Lin F; Ma L; Zhang Q; Zou Y; Yang F; Pang H; Xu J; Pan X
    Nanomaterials (Basel); 2022 Feb; 12(4):. PubMed ID: 35215049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible filaments in a flowing soap film as a model for one-dimensional flags in a two-dimensional wind.
    Zhang J; Childress S; Libchaber A; Shelley M
    Nature; 2000 Dec; 408(6814):835-9. PubMed ID: 11130717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A compound cantilever beam piezoelectric harvester based on wind energy excitation.
    Zhang Z; He L; Hu R; Hu D; Zhou J; Cheng G
    Rev Sci Instrum; 2022 Aug; 93(8):085003. PubMed ID: 36050068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and Development of a Lead-Freepiezoelectric Energy Harvester for Wideband, Low Frequency, and Low Amplitude Vibrations.
    Kumari N; Rakotondrabe M
    Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Future prospects and recent developments of polyvinylidene fluoride (PVDF) piezoelectric polymer; fabrication methods, structure, and electro-mechanical properties.
    Mohammadpourfazeli S; Arash S; Ansari A; Yang S; Mallick K; Bagherzadeh R
    RSC Adv; 2022 Dec; 13(1):370-387. PubMed ID: 36683768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental Study on Magnetic Coupling Piezoelectric-Electromagnetic Composite Galloping Energy Harvester.
    Li X; Ma T; Liu B; Wang C; Su Y
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulated and measured piezoelectric energy harvesting of dynamic load in tires.
    Staaf H; Matsson S; Sepheri S; Köhler E; Daoud K; Ahrentorp F; Jonasson C; Folkow P; Ryynänen L; Penttila M; Rusu C
    Heliyon; 2024 Apr; 10(7):e29043. PubMed ID: 38601550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impedance Coupled Voltage Boosting Circuit for Polyvinylidene Fluoride Based Energy Harvester.
    Lee K; Jeong Y; Lee CH; Lee J; Seo HS; Cho Y
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flutter-driven triboelectrification for harvesting wind energy.
    Bae J; Lee J; Kim S; Ha J; Lee BS; Park Y; Choong C; Kim JB; Wang ZL; Kim HY; Park JJ; Chung UI
    Nat Commun; 2014 Sep; 5():4929. PubMed ID: 25247474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Freestanding Flag-Type Triboelectric Nanogenerator for Harvesting High-Altitude Wind Energy from Arbitrary Directions.
    Zhao Z; Pu X; Du C; Li L; Jiang C; Hu W; Wang ZL
    ACS Nano; 2016 Feb; 10(2):1780-7. PubMed ID: 26738695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vortex-induced vibration wind energy harvesting by piezoelectric MEMS device in formation.
    Lee YJ; Qi Y; Zhou G; Lua KB
    Sci Rep; 2019 Dec; 9(1):20404. PubMed ID: 31892701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Research on nonlinear isometric L-shaped cantilever beam type piezoelectric wind energy harvester based on magnetic coupling.
    He L; Yu G; Han Y; Liu L; Hu D; Cheng G
    Rev Sci Instrum; 2022 Nov; 93(11):115004. PubMed ID: 36461430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A hybrid energy harvester inspired by bionic flapping wing structure based on magnetic levitation.
    Fan B; Fang J; Jiang S; Li C; Shao J; Liu W
    Rev Sci Instrum; 2024 Jan; 95(1):. PubMed ID: 38214593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and Experimental Investigation of a Rotational Piezoelectric Energy Harvester with an Offset Distance from the Rotation Center.
    Chen J; Liu X; Wang H; Wang S; Guan M
    Micromachines (Basel); 2022 Feb; 13(3):. PubMed ID: 35334679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical simulation of flow over a parallel cantilevered flag in the vicinity of a rigid wall.
    Wang L; Tian FB
    Phys Rev E; 2019 May; 99(5-1):053111. PubMed ID: 31212451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical and Experimental Investigation of a Rotational Magnetic Couple Piezoelectric Energy Harvester.
    Sun F; Dong R; Zhou R; Xu F; Mei X
    Micromachines (Basel); 2022 Jun; 13(6):. PubMed ID: 35744550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.