BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 38139581)

  • 1. An Open-Source Wireless Electrophysiology System for In Vivo Neuronal Activity Recording in the Rodent Brain: 2.0.
    Erofeev A; Antifeev I; Vinokurov E; Bezprozvanny I; Vlasova O
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A wireless and batteryless neural headstage with optical stimulation and electrophysiological recording.
    Ameli R; Mirbozorgi A; Neron JL; Lechasseur Y; Gosselin B
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5662-5. PubMed ID: 24111022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A low-cost, open-source, wireless electrophysiology system.
    Ghomashchi A; Zheng Z; Majaj N; Trumpis M; Kiorpes L; Viventi J
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3138-41. PubMed ID: 25570656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wireless multi-channel single unit recording in freely moving and vocalizing primates.
    Roy S; Wang X
    J Neurosci Methods; 2012 Jan; 203(1):28-40. PubMed ID: 21933683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Wireless Optogenetic Headstage with Multichannel Electrophysiological Recording Capability.
    Gagnon-Turcotte G; Kisomi AA; Ameli R; Camaro CO; LeChasseur Y; Néron JL; Bareil PB; Fortier P; Bories C; de Koninck Y; Gosselin B
    Sensors (Basel); 2015 Sep; 15(9):22776-97. PubMed ID: 26371006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive quantization of local field potentials for wireless implants in freely moving animals: an open-source neural recording device.
    Martinez D; Clément M; Messaoudi B; Gervasoni D; Litaudon P; Buonviso N
    J Neural Eng; 2018 Apr; 15(2):025001. PubMed ID: 29219118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-term synchronized electrophysiological and behavioral wireless monitoring of freely moving animals.
    Grand L; Ftomov S; Timofeev I
    J Neurosci Methods; 2013 Jan; 212(2):237-41. PubMed ID: 23099345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fully implantable neural recording and stimulation interfaces: Peripheral nerve interface applications.
    Deshmukh A; Brown L; Barbe MF; Braverman AS; Tiwari E; Hobson L; Shunmugam S; Armitage O; Hewage E; Ruggieri MR; Morizio J
    J Neurosci Methods; 2020 Mar; 333():108562. PubMed ID: 31862376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Miniature wireless recording and stimulation system for rodent behavioural testing.
    Pinnell RC; Dempster J; Pratt J
    J Neural Eng; 2015 Dec; 12(6):066015. PubMed ID: 26468659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wireless electrophysiology of the brain of freely swimming goldfish.
    Vinepinsky E; Donchin O; Segev R
    J Neurosci Methods; 2017 Feb; 278():76-86. PubMed ID: 28069391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Open-Source Wireless Electrophysiological Complex for In Vivo Recording Neuronal Activity in the Rodent's Brain.
    Erofeev A; Kazakov D; Makarevich N; Bolshakova A; Gerasimov E; Nekrasov A; Kazakin A; Komarevtsev I; Bolsunovskaja M; Bezprozvanny I; Vlasova O
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Wireless, Bidirectional Interface for In Vivo Recording and Stimulation of Neural Activity in Freely Behaving Rats.
    Melo-Thomas L; Engelhardt KA; Thomas U; Hoehl D; Thomas S; Wöhr M; Werner B; Bremmer F; Schwarting RKW
    J Vis Exp; 2017 Nov; (129):. PubMed ID: 29155767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A high-performance 8 nV/√Hz 8-channel wearable and wireless system for real-time monitoring of bioelectrical signals.
    Petkos K; Koutsoftidis S; Guiho T; Degenaar P; Jackson A; Greenwald SE; Brown P; Denison T; Drakakis EM
    J Neuroeng Rehabil; 2019 Dec; 16(1):156. PubMed ID: 31823804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A wireless neural recording system with a precision motorized microdrive for freely behaving animals.
    Hasegawa T; Fujimoto H; Tashiro K; Nonomura M; Tsuchiya A; Watanabe D
    Sci Rep; 2015 Jan; 5():7853. PubMed ID: 25597933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A wireless transmission neural interface system for unconstrained non-human primates.
    Fernandez-Leon JA; Parajuli A; Franklin R; Sorenson M; Felleman DJ; Hansen BJ; Hu M; Dragoi V
    J Neural Eng; 2015 Oct; 12(5):056005. PubMed ID: 26269496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A low-cost multichannel wireless neural stimulation system for freely roaming animals.
    Alam M; Chen X; Fernandez E
    J Neural Eng; 2013 Dec; 10(6):066010. PubMed ID: 24162159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chronic, wireless recordings of large-scale brain activity in freely moving rhesus monkeys.
    Schwarz DA; Lebedev MA; Hanson TL; Dimitrov DF; Lehew G; Meloy J; Rajangam S; Subramanian V; Ifft PJ; Li Z; Ramakrishnan A; Tate A; Zhuang KZ; Nicolelis MA
    Nat Methods; 2014 Jun; 11(6):670-6. PubMed ID: 24776634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wireless recording systems: from noninvasive EEG-NIRS to invasive EEG devices.
    Sawan M; Salam MT; Le Lan J; Kassab A; Gelinas S; Vannasing P; Lesage F; Lassonde M; Nguyen DK
    IEEE Trans Biomed Circuits Syst; 2013 Apr; 7(2):186-95. PubMed ID: 23853301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rodent wearable ultrasound system for wireless neural recording.
    Piech DK; Kay JE; Boser BE; Maharbiz MM
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():221-225. PubMed ID: 29059850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.