These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 38139591)

  • 1. Simultaneous Dry and Gel-Based High-Density Electroencephalography Recordings.
    Fiedler P; Graichen U; Zimmer E; Haueisen J
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A high-density 256-channel cap for dry electroencephalography.
    Fiedler P; Fonseca C; Supriyanto E; Zanow F; Haueisen J
    Hum Brain Mapp; 2022 Mar; 43(4):1295-1308. PubMed ID: 34796574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel Multipin Electrode Cap System for Dry Electroencephalography.
    Fiedler P; Pedrosa P; Griebel S; Fonseca C; Vaz F; Supriyanto E; Zanow F; Haueisen J
    Brain Topogr; 2015 Sep; 28(5):647-656. PubMed ID: 25998854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-Center Evaluation of Gel-Based and Dry Multipin EEG Caps.
    Ng CR; Fiedler P; Kuhlmann L; Liley D; Vasconcelos B; Fonseca C; Tamburro G; Comani S; Lui TK; Tse CY; Warsito IF; Supriyanto E; Haueisen J
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flower electrodes for comfortable dry electroencephalography.
    Warsito IF; Komosar M; Bernhard MA; Fiedler P; Haueisen J
    Sci Rep; 2023 Oct; 13(1):16589. PubMed ID: 37789022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison between a wireless dry electrode EEG system with a conventional wired wet electrode EEG system for clinical applications.
    Hinrichs H; Scholz M; Baum AK; Kam JWY; Knight RT; Heinze HJ
    Sci Rep; 2020 Mar; 10(1):5218. PubMed ID: 32251333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel bifunctional cap for simultaneous electroencephalography and transcranial electrical stimulation.
    Wunder S; Hunold A; Fiedler P; Schlegelmilch F; Schellhorn K; Haueisen J
    Sci Rep; 2018 May; 8(1):7259. PubMed ID: 29740054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation of Soft Multipin Dry EEG Electrodes.
    Heijs JJA; Havelaar RJ; Fiedler P; van Wezel RJA; Heida T
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34696039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dry EEG in Sports Sciences: A Fast and Reliable Tool to Assess Individual Alpha Peak Frequency Changes Induced by Physical Effort.
    di Fronso S; Fiedler P; Tamburro G; Haueisen J; Bertollo M; Comani S
    Front Neurosci; 2019; 13():982. PubMed ID: 31619953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A high-speed brain-computer interface (BCI) using dry EEG electrodes.
    Spüler M
    PLoS One; 2017; 12(2):e0172400. PubMed ID: 28225794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 32-channel mouse EEG: Visual evoked potentials.
    Land R; Kapche A; Ebbers L; Kral A
    J Neurosci Methods; 2019 Sep; 325():108316. PubMed ID: 31251949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visual evoked potential (VEP) measured by simultaneous 64-channel EEG and 3T fMRI.
    Bonmassar G; Anami K; Ives J; Belliveau JW
    Neuroreport; 1999 Jun; 10(9):1893-7. PubMed ID: 10501528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new EEG recording system for passive dry electrodes.
    Gargiulo G; Calvo RA; Bifulco P; Cesarelli M; Jin C; Mohamed A; van Schaik A
    Clin Neurophysiol; 2010 May; 121(5):686-93. PubMed ID: 20097606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of Dry-Contact EEG Electrodes and an Empirical Comparison of Ag/AgCl and IrO
    Kappel SL; Kidmose P
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3127-3130. PubMed ID: 36086317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating and benchmarking the EEG signal quality of high-density, dry MXene-based electrode arrays against gelled Ag/AgCl electrodes.
    Erickson B; Rich R; Shankar S; Kim B; Driscoll N; Mentzelopoulos G; Fernandez-Nuñez G; Vitale F; Medaglia JD
    J Neural Eng; 2024 Jan; 21(1):. PubMed ID: 38081060
    [No Abstract]   [Full Text] [Related]  

  • 16. The Arch Electrode: A Novel Dry Electrode Concept for Improved Wearing Comfort.
    Vasconcelos B; Fiedler P; Machts R; Haueisen J; Fonseca C
    Front Neurosci; 2021; 15():748100. PubMed ID: 34733134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A dry electroencephalogram electrode for applications in steady-state visual evoked potential-based brain-computer interface systems.
    Li P; Yin C; Li M; Li H; Yang B
    Biosens Bioelectron; 2021 Sep; 187():113326. PubMed ID: 34004544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatiotemporal brain imaging of visual-evoked activity using interleaved EEG and fMRI recordings.
    Bonmassar G; Schwartz DP; Liu AK; Kwong KK; Dale AM; Belliveau JW
    Neuroimage; 2001 Jun; 13(6 Pt 1):1035-43. PubMed ID: 11352609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reliability of VEP Recordings Using Chronically Implanted Screw Electrodes in Mice.
    Makowiecki K; Garrett A; Clark V; Graham SL; Rodger J
    Transl Vis Sci Technol; 2015 Apr; 4(2):15. PubMed ID: 25938003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of Dry Sensors for Neonatal EEG Recordings.
    Fridman I; Cordeiro M; Rais-Bahrami K; McDonald NJ; Reese JJ; Massaro AN; Conry JA; Chang T; Soussou W; Tsuchida TN
    J Clin Neurophysiol; 2016 Apr; 33(2):149-55. PubMed ID: 26562208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.