These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 38139591)
21. Novel hydrogel-based preparation-free EEG electrode. Alba NA; Sclabassi RJ; Sun M; Cui XT IEEE Trans Neural Syst Rehabil Eng; 2010 Aug; 18(4):415-23. PubMed ID: 20423811 [TBL] [Abstract][Full Text] [Related]
22. Visual Evoked Potentials Used to Evaluate a Commercially Available Superabsorbent Polymer as a Cheap and Efficient Material for Preparation-Free Electrodes for Recording Electrical Potentials of the Human Visual Cortex. Straßer T; Kramer S; Kempf M; Peters T; Kurtenbach A; Zrenner E Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31717510 [TBL] [Abstract][Full Text] [Related]
23. Soft, comfortable polymer dry electrodes for high quality ECG and EEG recording. Chen YH; Op de Beeck M; Vanderheyden L; Carrette E; Mihajlović V; Vanstreels K; Grundlehner B; Gadeyne S; Boon P; Van Hoof C Sensors (Basel); 2014 Dec; 14(12):23758-80. PubMed ID: 25513825 [TBL] [Abstract][Full Text] [Related]
24. High and dry? Comparing active dry EEG electrodes to active and passive wet electrodes. Mathewson KE; Harrison TJ; Kizuk SA Psychophysiology; 2017 Jan; 54(1):74-82. PubMed ID: 28000254 [TBL] [Abstract][Full Text] [Related]
25. Comb-shaped polymer-based Dry electrodes for EEG/ECG measurements with high user comfort. Chen YH; Op de Beeck M; Vanderheyden L; Mihajlovic V; Grundlehner B; Van Hoof C Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():551-4. PubMed ID: 24109746 [TBL] [Abstract][Full Text] [Related]
26. Systematic comparison between a wireless EEG system with dry electrodes and a wired EEG system with wet electrodes. Kam JWY; Griffin S; Shen A; Patel S; Hinrichs H; Heinze HJ; Deouell LY; Knight RT Neuroimage; 2019 Jan; 184():119-129. PubMed ID: 30218769 [TBL] [Abstract][Full Text] [Related]
27. Development and Experimental Validation of a Dry Non-Invasive Multi-Channel Mouse Scalp EEG Sensor through Visual Evoked Potential Recordings. Kim D; Yeon C; Kim K Sensors (Basel); 2017 Feb; 17(2):. PubMed ID: 28208777 [TBL] [Abstract][Full Text] [Related]
28. Effects of electrode density and electrolyte spreading in dense array electroencephalographic recording. Greischar LL; Burghy CA; van Reekum CM; Jackson DC; Pizzagalli DA; Mueller C; Davidson RJ Clin Neurophysiol; 2004 Mar; 115(3):710-20. PubMed ID: 15036067 [TBL] [Abstract][Full Text] [Related]
29. Repeatability of short-duration transient visual evoked potentials in normal subjects. Tello C; De Moraes CG; Prata TS; Derr P; Patel J; Siegfried J; Liebmann JM; Ritch R Doc Ophthalmol; 2010 Jun; 120(3):219-28. PubMed ID: 20111979 [TBL] [Abstract][Full Text] [Related]
30. Comparing the Usability of Alternative EEG Devices to Traditional Electrode Caps for SSVEP-BCI Controlled Assistive Robots. Cardoso ASS; Andreasen Struijk LNS; Kaeseler RL; Jochumsen M IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176154 [TBL] [Abstract][Full Text] [Related]
31. Improving reproducibility of VEP recording in rats: electrodes, stimulus source and peak analysis. You Y; Klistorner A; Thie J; Graham SL Doc Ophthalmol; 2011 Oct; 123(2):109-19. PubMed ID: 21909708 [TBL] [Abstract][Full Text] [Related]
32. Design, fabrication and experimental validation of a novel dry-contact sensor for measuring electroencephalography signals without skin preparation. Liao LD; Wang IJ; Chen SF; Chang JY; Lin CT Sensors (Basel); 2011; 11(6):5819-34. PubMed ID: 22163929 [TBL] [Abstract][Full Text] [Related]
33. Visual evoked potentials may be recorded simultaneously with fMRI scanning: A validation study. Comi E; Annovazzi P; Silva AM; Cursi M; Blasi V; Cadioli M; Inuggi A; Falini A; Comi G; Leocani L Hum Brain Mapp; 2005 Apr; 24(4):291-8. PubMed ID: 15678479 [TBL] [Abstract][Full Text] [Related]
34. Novel semi-dry electrodes for brain-computer interface applications. Wang F; Li G; Chen J; Duan Y; Zhang D J Neural Eng; 2016 Aug; 13(4):046021. PubMed ID: 27378253 [TBL] [Abstract][Full Text] [Related]
35. Normalization of visual evoked potentials using underlying electroencephalogram levels improves amplitude reproducibility in rats. You Y; Thie J; Klistorner A; Gupta VK; Graham SL Invest Ophthalmol Vis Sci; 2012 Mar; 53(3):1473-8. PubMed ID: 22297498 [TBL] [Abstract][Full Text] [Related]
36. A Multichannel EEG Acquisition System With Novel Ag NWs/PDMS Flexible Dry Electrodes. Wang Z; Chen C; Li W; Yuan W; Han T; Sun C; Tao L; Zhao Y; Chen W Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1299-1302. PubMed ID: 30440629 [TBL] [Abstract][Full Text] [Related]
37. Dry and noncontact EEG sensors for mobile brain-computer interfaces. Chi YM; Wang YT; Wang Y; Maier C; Jung TP; Cauwenberghs G IEEE Trans Neural Syst Rehabil Eng; 2012 Mar; 20(2):228-35. PubMed ID: 22180514 [TBL] [Abstract][Full Text] [Related]
39. A Novel Bristle-Shaped Semi-Dry Electrode With Low Contact Impedance and Ease of Use Features for EEG Signal Measurements. Gao KP; Yang HJ; Liao LL; Jiang CP; Zhao N; Wang XL; Li XY; Chen X; Yang B; Liu J IEEE Trans Biomed Eng; 2020 Mar; 67(3):750-761. PubMed ID: 31170063 [TBL] [Abstract][Full Text] [Related]
40. Flexible graphene/GO electrode for gel-free EEG. Ko LW; Su CH; Liao PL; Liang JT; Tseng YH; Chen SH J Neural Eng; 2021 May; 18(4):. PubMed ID: 33831852 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]