These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 38139639)
1. Monitoring of Single-Track Melting States Based on Photodiode Signal during Laser Powder Bed Fusion. Cao L; Hu W; Zhou T; Yu L; Huang X Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139639 [TBL] [Abstract][Full Text] [Related]
2. Multiple Sensor Detection of Process Phenomena in Laser Powder Bed Fusion. Lane B; Whitenton E; Moylan S Proc SPIE Int Soc Opt Eng; 2016; 986104():. PubMed ID: 32165779 [TBL] [Abstract][Full Text] [Related]
3. Data-fusion for in-situ monitoring and molten state identification during LPBF of NiCoCr medium-entropy alloy. Li H; Yan S; Fu Y Sci Rep; 2024 Jun; 14(1):14697. PubMed ID: 38926441 [TBL] [Abstract][Full Text] [Related]
4. Full-Field Mapping and Flow Quantification of Melt Pool Dynamics in Laser Powder Bed Fusion of SS316L. Ur Rehman A; Pitir F; Salamci MU Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34771790 [TBL] [Abstract][Full Text] [Related]
5. Transient Laser Energy Absorption, Co-axial Melt Pool Monitoring, and Relationship to Melt Pool Morphology. Lane B; Zhirnov I; Mekhontsev S; Grantham S; Ricker R; Rauniyar S; Chou K Addit Manuf; 2020 Dec; 36():. PubMed ID: 34141601 [TBL] [Abstract][Full Text] [Related]
6. Effect of Laser Scanning Speed on the Microstructure and Mechanical Properties of Laser-Powder-Bed-Fused K418 Nickel-Based Alloy. Chen Z; Lu Y; Luo F; Zhang S; Wei P; Yao S; Wang Y Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591384 [TBL] [Abstract][Full Text] [Related]
7. Pyrometric-Based Melt Pool Monitoring Study of CuCr1Zr Processed Using L-PBF. Artzt K; Siggel M; Kleinert J; Riccius J; Requena G; Haubrich J Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33081329 [TBL] [Abstract][Full Text] [Related]
8. Inline Quality Control through Optical Deep Learning-Based Porosity Determination for Powder Bed Fusion of Polymers. Schlicht S; Jaksch A; Drummer D Polymers (Basel); 2022 Feb; 14(5):. PubMed ID: 35267706 [TBL] [Abstract][Full Text] [Related]
9. A Layer-Wise Surface Deformation Defect Detection by Convolutional Neural Networks in Laser Powder-Bed Fusion Images. Ansari MA; Crampton A; Parkinson S Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295232 [TBL] [Abstract][Full Text] [Related]
10. In-Situ Characterization of Pore Formation Dynamics in Pulsed Wave Laser Powder Bed Fusion. Hojjatzadeh SMH; Guo Q; Parab ND; Qu M; Escano LI; Fezzaa K; Everhart W; Sun T; Chen L Materials (Basel); 2021 May; 14(11):. PubMed ID: 34072400 [TBL] [Abstract][Full Text] [Related]
11. Research on an Online Monitoring Device for the Powder Laying Process of Laser Powder Bed Fusion. Wei B; Liu J; Li J; Zhao Z; Liu Y; Yang G; Liu L; Chang H Micromachines (Basel); 2024 Jan; 15(1):. PubMed ID: 38258216 [TBL] [Abstract][Full Text] [Related]
12. Measurements of melt pool geometry and cooling rates of individual laser traces on IN625 bare plates. Lane B; Heigel J; Ricker R; Zhirnov I; Khromschenko V; Weaver J; Phan T; Stoudt M; Mekhontsev S; Levine L Integr Mater Manuf Innov; 2020; 9(1):. PubMed ID: 34123701 [TBL] [Abstract][Full Text] [Related]
13. Processability of Atypical WC-Co Composite Feedstock by Laser Powder-Bed Fusion. Al-Thamir M; McCartney DG; Simonelli M; Hague R; Clare A Materials (Basel); 2019 Dec; 13(1):. PubMed ID: 31861848 [TBL] [Abstract][Full Text] [Related]
14. Melt Pool Shape Evaluation by Single-Track Experiments and Finite-Element Thermal Analysis: Balling and Lack of Fusion Criteria for Generating Process Window of Inconel738LC. Katagiri J; Kusano M; Minamoto S; Kitano H; Daimaru K; Tsujii M; Watanabe M Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837360 [TBL] [Abstract][Full Text] [Related]
15. Characterizing the effects of laser control in laser powder bed fusion on near-surface pore formation via combined analysis of in-situ melt pool monitoring and X-ray computed tomography. Kim FH; Yeung H; Garboczi EJ Addit Manuf; 2021 Dec; 48(A):. PubMed ID: 36733468 [TBL] [Abstract][Full Text] [Related]
16. Fused tracks and layers of Ti10Mo6Cu data obtained via laser powder bed fusion. Dzogbewu TC; du Preez WB Data Brief; 2023 Feb; 46():108775. PubMed ID: 36478684 [TBL] [Abstract][Full Text] [Related]
17. Microstructural Control Strategy Based on Optimizing Laser Powder Bed Fusion for Different Hastelloy X Powder Size. Jang JE; Kim W; Sung JH; Kim YJ; Park SH; Kim DH Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143502 [TBL] [Abstract][Full Text] [Related]
18. Deep Learning Based Monitoring of Spatter Behavior by the Acoustic Signal in Selective Laser Melting. Luo S; Ma X; Xu J; Li M; Cao L Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770485 [TBL] [Abstract][Full Text] [Related]
19. Encoding Stability into Laser Powder Bed Fusion Monitoring Using Temporal Features and Pore Density Modelling. Booth BG; Heylen R; Nourazar M; Verhees D; Philips W; Bey-Temsamani A Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632151 [TBL] [Abstract][Full Text] [Related]
20. Practical Approach to Eliminate Solidification Cracks by Supplementing AlMg4.5Mn0.7 with AlSi10Mg Powder in Laser Powder Bed Fusion. Böhm C; Werz M; Weihe S Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057290 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]