These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 38139645)

  • 1. Integrating Surrounding Vehicle Information for Vehicle Trajectory Representation and Abnormal Lane-Change Behavior Detection.
    Xu D; Liu M; Yao X; Lyu N
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A co-evolutionary lane-changing trajectory planning method for automated vehicles based on the instantaneous risk identification.
    Wu J; Chen X; Bie Y; Zhou W
    Accid Anal Prev; 2023 Feb; 180():106907. PubMed ID: 36455450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A proactive lane-changing risk prediction framework considering driving intention recognition and different lane-changing patterns.
    Shangguan Q; Fu T; Wang J; Fang S; Fu L
    Accid Anal Prev; 2022 Jan; 164():106500. PubMed ID: 34823098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detecting lane change maneuvers using SHRP2 naturalistic driving data: A comparative study machine learning techniques.
    Das A; Khan MN; Ahmed MM
    Accid Anal Prev; 2020 Jul; 142():105578. PubMed ID: 32408143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. End-to-End Automated Lane-Change Maneuvering Considering Driving Style Using a Deep Deterministic Policy Gradient Algorithm.
    Hu H; Lu Z; Wang Q; Zheng C
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32971987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Novel Intelligent Approach to Lane-Change Behavior Prediction for Intelligent and Connected Vehicles.
    Du L; Chen W; Ji J; Pei Z; Tong B; Zheng H
    Comput Intell Neurosci; 2022; 2022():9516218. PubMed ID: 35082845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Support Vector Machine Based Lane-Changing Behavior Recognition and Lateral Trajectory Prediction.
    Feng Y; Yan X
    Comput Intell Neurosci; 2022; 2022():3632333. PubMed ID: 35592714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analyzing the delays of target lane vehicles caused by vehicle lane-changing operation.
    Yang Q; Lu F; Ma J; Niu X; Wang J
    Sci Rep; 2021 Nov; 11(1):22047. PubMed ID: 34764302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Collision-avoidance lane change control method for enhancing safety for connected vehicle platoon in mixed traffic environment.
    Ma Y; Liu Q; Fu J; Liufu K; Li Q
    Accid Anal Prev; 2023 May; 184():106999. PubMed ID: 36780868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Key feature selection and risk prediction for lane-changing behaviors based on vehicles' trajectory data.
    Chen T; Shi X; Wong YD
    Accid Anal Prev; 2019 Aug; 129():156-169. PubMed ID: 31150922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Research on Vehicle Trajectory Deviation Characteristics on Freeways Using Natural Driving Trajectory Data.
    Dai Z; Pan C; Xiong W; Ding R; Zhang H; Xu J
    Int J Environ Res Public Health; 2022 Nov; 19(22):. PubMed ID: 36429411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An integrated architecture for intelligence evaluation of automated vehicles.
    Huang H; Zheng X; Yang Y; Liu J; Liu W; Wang J
    Accid Anal Prev; 2020 Sep; 145():105681. PubMed ID: 32712190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coordinated Decision Control of Lane-Change and Car-Following for Intelligent Vehicle Based on Time Series Prediction and Deep Reinforcement Learning.
    Zhang K; Pu T; Zhang Q; Nie Z
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new method of temporal and spatial risk estimation for lane change considering conventional recognition defects.
    Wu J; Wen H; Qi W
    Accid Anal Prev; 2020 Dec; 148():105796. PubMed ID: 33099126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Research on Vehicle Lane Change Warning Method Based on Deep Learning Image Processing.
    Zhang Q; Sun Z; Shu H
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35591016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A proactive crash risk prediction framework for lane-changing behavior incorporating individual driving styles.
    Zhang Y; Chen Y; Gu X; Sze NN; Huang J
    Accid Anal Prev; 2023 Aug; 188():107072. PubMed ID: 37137214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Injury-severity analysis of lane change crashes involving commercial motor vehicles on interstate highways.
    Adanu EK; Lidbe A; Tedla E; Jones S
    J Safety Res; 2021 Feb; 76():30-35. PubMed ID: 33653562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A hybrid deep learning approach for driver anomalous lane changing identification.
    Fan P; Guo J; Wang Y; Wijnands JS
    Accid Anal Prev; 2022 Jun; 171():106661. PubMed ID: 35462211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactive Lane Keeping System for Autonomous Vehicles Using LSTM-RNN Considering Driving Environments.
    Jeong Y
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Game Theory-Based Approach for Modeling Autonomous Vehicle Behavior in Congested, Urban Lane-Changing Scenarios.
    Smirnov N; Liu Y; Validi A; Morales-Alvarez W; Olaverri-Monreal C
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33671694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.