These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 38139694)

  • 1. A Deep Reinforcement Learning Strategy for Surrounding Vehicles-Based Lane-Keeping Control.
    Kim J; Park S; Kim J; Yoo J
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated Lane Centering: An Off-the-Shelf Computer Vision Product vs. Infrastructure-Based Chip-Enabled Raised Pavement Markers.
    Kadav P; Sharma S; Fanas Rojas J; Patil P; Wang CR; Ekti AR; Meyer RT; Asher ZD
    Sensors (Basel); 2024 Apr; 24(7):. PubMed ID: 38610538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactive Lane Keeping System for Autonomous Vehicles Using LSTM-RNN Considering Driving Environments.
    Jeong Y
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human-Like Lane Change Decision Model for Autonomous Vehicles that Considers the Risk Perception of Drivers in Mixed Traffic.
    Wang C; Sun Q; Li Z; Zhang H
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32316210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Driver trust in five driver assistance technologies following real-world use in four production vehicles.
    Kidd DG; Cicchino JB; Reagan IJ; Kerfoot LB
    Traffic Inj Prev; 2017 May; 18(sup1):S44-S50. PubMed ID: 28339302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of an Autonomous Driving Vehicle for Garbage Collection in Residential Areas.
    Pyo JW; Bae SH; Joo SH; Lee MK; Ghosh A; Kuc TY
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple Event-Based Simulation Scenario Generation Approach for Autonomous Vehicle Smart Sensors and Devices.
    Park J; Wen M; Sung Y; Cho K
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31615164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coordinated Decision Control of Lane-Change and Car-Following for Intelligent Vehicle Based on Time Series Prediction and Deep Reinforcement Learning.
    Zhang K; Pu T; Zhang Q; Nie Z
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. End-to-End Automated Lane-Change Maneuvering Considering Driving Style Using a Deep Deterministic Policy Gradient Algorithm.
    Hu H; Lu Z; Wang Q; Zheng C
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32971987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Collision-avoidance lane change control method for enhancing safety for connected vehicle platoon in mixed traffic environment.
    Ma Y; Liu Q; Fu J; Liufu K; Li Q
    Accid Anal Prev; 2023 May; 184():106999. PubMed ID: 36780868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Survey on Sensor Failures in Autonomous Vehicles: Challenges and Solutions.
    Matos F; Bernardino J; Durães J; Cunha J
    Sensors (Basel); 2024 Aug; 24(16):. PubMed ID: 39204805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the Image Sensor Processing for Lane Detection and Control in Vehicle Lane Keeping Systems.
    Kuo CY; Lu YR; Yang SM
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30965566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conditional Artificial Potential Field-Based Autonomous Vehicle Safety Control with Interference of Lane Changing in Mixed Traffic Scenario.
    Gao K; Yan D; Yang F; Xie J; Liu L; Du R; Xiong N
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31569737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated vehicle data pipeline for accident reconstruction: New insights from LiDAR, camera, and radar data.
    Beck J; Arvin R; Lee S; Khattak A; Chakraborty S
    Accid Anal Prev; 2023 Feb; 180():106923. PubMed ID: 36502597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A co-evolutionary lane-changing trajectory planning method for automated vehicles based on the instantaneous risk identification.
    Wu J; Chen X; Bie Y; Zhou W
    Accid Anal Prev; 2023 Feb; 180():106907. PubMed ID: 36455450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Research into Autonomous Vehicles Following and Obstacle Avoidance Based on Deep Reinforcement Learning Method under Map Constraints.
    Li Z; Yuan S; Yin X; Li X; Tang S
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Survey on Deep-Learning-Based LiDAR 3D Object Detection for Autonomous Driving.
    Alaba SY; Ball JE
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36559950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accuracy-Power Controllable LiDAR Sensor System with 3D Object Recognition for Autonomous Vehicle.
    Lee S; Lee D; Choi P; Park D
    Sensors (Basel); 2020 Oct; 20(19):. PubMed ID: 33036476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of Advanced Driver-Assistance Systems for Safe and Comfortable Driving of Motor Vehicles.
    Neumann T
    Sensors (Basel); 2024 Sep; 24(19):. PubMed ID: 39409263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Overview of Autonomous Vehicles Sensors and Their Vulnerability to Weather Conditions.
    Vargas J; Alsweiss S; Toker O; Razdan R; Santos J
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.