These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 38139740)

  • 21. High Electromechanical Coupling Coefficient of Longitudinally Excited Shear Wave Resonator Based on Optimized Bragg Structure.
    Zhang Z; Xuan W; Jiang H; Xie W; Li Z; Dong S; Jin H; Luo J
    Micromachines (Basel); 2023 Nov; 14(11):. PubMed ID: 38004943
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-Q Resonator-Inductor Using LiNbO₃ Plate for Frequency Tuning in 1-5 GHz.
    Wu S; Wu Z; Bao F; Zou J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Jul; 69(7):2331-2338. PubMed ID: 35503838
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Materials, Design, and Characteristics of Bulk Acoustic Wave Resonator: A Review.
    Liu Y; Cai Y; Zhang Y; Tovstopyat A; Liu S; Sun C
    Micromachines (Basel); 2020 Jun; 11(7):. PubMed ID: 32605313
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-Frequency Surface Acoustic Wave Resonator with Diamond/AlN/IDT/AlN/Diamond Multilayer Structure.
    Lei L; Dong B; Hu Y; Lei Y; Wang Z; Ruan S
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080938
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Scattering Matrix Approach to Design of One-Port Surface Acoustic Wave Resonator Sensors Utilizing Reflectors as Sensing Element.
    Kesuma HP; Ramakrishnan N; Lan BL; Dhillon AS; Achath Mohanan A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Apr; 68(4):1418-1429. PubMed ID: 33064646
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Opportunities for shear energy scaling in bulk acoustic wave resonators.
    Jose S; Hueting RJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Oct; 61(10):1720-8. PubMed ID: 25265180
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of Structural Parameters on Performance of SAW Resonators Based on 128° YX LiNbO
    Geng W; Zhao C; Xue F; Qiao X; He J; Xue G; Liu Y; Wei H; Bi K; Mei L; Chou X
    Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745447
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultra-Large-Coupling and Spurious-Free SH
    Zou J; Yantchev V; Iliev F; Plessky V; Samadian S; Hammond RB; Turner PJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Feb; 67(2):374-386. PubMed ID: 31567078
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimization of AIN Composite Structure Based Surface Acoustic Wave Device for Potential Sensing at Extremely High Temperature.
    Fan S; Wang W; Li X; Jia Y; Sun Y; Liu M
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32726902
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-frequency Lamb wave device composed of MEMS structure using LiNbO3 thin film and air gap.
    Kadota M; Ogami T; Yamamoto K; Tochishita H; Negoro Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Nov; 57(11):2564-71. PubMed ID: 21041143
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spurious resonance suppression in gigahertz-range ZnO thin-film bulk acoustic wave resonators by the boundary frame method: modeling and experiment.
    Pensala T; Ylilammi M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Aug; 56(8):1731-44. PubMed ID: 19686989
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Figure of Merit Enhancement of Laterally Vibrating RF-MEMS Resonators via Energy-Preserving Addendum Frame.
    Workie TB; Wu Z; Tang P; Bao J; Hashimoto KY
    Micromachines (Basel); 2022 Jan; 13(1):. PubMed ID: 35056270
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-velocity non-attenuated acoustic waves in LiTaO
    Naumenko NF
    Ultrasonics; 2019 May; 95():1-5. PubMed ID: 30851695
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Measurement and FEM/BEM simulation of transverse effects in SAW resonators on lithium tantalate.
    Solal M; Chen L; Gratier J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Nov; 60(11):2404-13. PubMed ID: 24158295
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Recent Progress of MEMS/NEMS Resonators.
    Wei L; Kuai X; Bao Y; Wei J; Yang L; Song P; Zhang M; Yang F; Wang X
    Micromachines (Basel); 2021 Jun; 12(6):. PubMed ID: 34205469
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Partially Etched Piezoelectric Film Filled with SiO
    Yu Z; Guo Y; Fu S; Li B; Liu P; Zhang S; Sun Z
    Micromachines (Basel); 2023 Sep; 14(9):. PubMed ID: 37763908
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lithium Niobate MEMS Antisymmetric Lamb Wave Resonators with Support Structures.
    Zhang Y; Jiang Y; Tang C; Deng C; Du F; He J; Hu Q; Wang Q; Yu H; Wang Z
    Micromachines (Basel); 2024 Jan; 15(2):. PubMed ID: 38398924
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A novel matching network employing surface acoustic wave devices for W-CDMA power amplifiers.
    Li H; He S; Hashimoto KY; Omori T; Yamaguchi M
    Ultrasonics; 2006 Dec; 44 Suppl 1():e905-9. PubMed ID: 16797655
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stepped electrode designs of TSM langasite resonators for high-temperature applications.
    Shah I; Saha T
    Ultrasonics; 2023 Apr; 130():106925. PubMed ID: 36630743
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Super-High-Frequency Bulk Acoustic Resonators Based on Aluminum Scandium Nitride for Wideband Applications.
    Dou W; Zhou C; Qin R; Yang Y; Guo H; Mu Z; Yu W
    Nanomaterials (Basel); 2023 Oct; 13(20):. PubMed ID: 37887888
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.