These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38139985)

  • 1. Evaluation of Chemical and Morphological Properties of Spruce Wood Stored in the Natural Environment.
    Čabalová I; Bélik M; Kučerová V; Jurczyková T; Bubeníková T
    Polymers (Basel); 2023 Dec; 15(24):. PubMed ID: 38139985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical and Morphological Composition of Norway Spruce Wood (
    Čabalová I; Bélik M; Kučerová V; Jurczyková T
    Polymers (Basel); 2021 May; 13(10):. PubMed ID: 34067680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Effect of Heat Flux to the Fire-Technical and Chemical Properties of Spruce Wood (
    Zachar M; Čabalová I; Kačíková D; Zacharová L
    Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34501079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dry-Matter Loss and Changes in the Chemical Composition of Spruce Wood after Long-Term Storing in the Form of Roundwood.
    Hrčka R; Kučerová V; Hönig V
    Polymers (Basel); 2022 Aug; 14(16):. PubMed ID: 36015657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical alterations of pine wood saccharides during heat sterilisation.
    Kačík F; Šmíra P; Kačíková D; Veľková V; Nasswettrová A; Vacek V
    Carbohydr Polym; 2015 Mar; 117():681-686. PubMed ID: 25498688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of thermal treatment on chemical, mechanical and colour traits in Norway spruce wood.
    Kačíková D; Kačík F; Cabalová I; Durkovič J
    Bioresour Technol; 2013 Sep; 144():669-74. PubMed ID: 23871194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in Chemical Structure of Thermally Modified Spruce Wood Due to Decaying Fungi.
    Vidholdová Z; Kačík F; Reinprecht L; Kučerová V; Luptáková J
    J Fungi (Basel); 2022 Jul; 8(7):. PubMed ID: 35887494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A sustainable woody biomass biorefinery.
    Liu S; Lu H; Hu R; Shupe A; Lin L; Liang B
    Biotechnol Adv; 2012; 30(4):785-810. PubMed ID: 22306164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving the degree of polymerization of cellulose nanofibers by largely preserving native structure of wood fibers.
    Zhou J; Fang Z; Chen K; Cui J; Yang D; Qiu X
    Carbohydr Polym; 2022 Nov; 296():119919. PubMed ID: 36087974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relation of Chemical Composition and Colour of Spruce Wood.
    Kučerová V; Hrčka R; Hýrošová T
    Polymers (Basel); 2022 Dec; 14(23):. PubMed ID: 36501727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanocrystalline cellulose derived from spruce wood: Influence of process parameters.
    Kumar P; Miller K; Kermanshahi-Pour A; Brar SK; Beims RF; Xu CC
    Int J Biol Macromol; 2022 Nov; 221():426-434. PubMed ID: 36084872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preserving Cellulose Structure: Delignified Wood Fibers for Paper Structures of High Strength and Transparency.
    Yang X; Berthold F; Berglund LA
    Biomacromolecules; 2018 Jul; 19(7):3020-3029. PubMed ID: 29757614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Host responses and metabolic profiles of wood components in Dutch elm hybrids with a contrasting tolerance to Dutch elm disease.
    Durkovič J; Kačík F; Olčák D; Kučerová V; Krajňáková J
    Ann Bot; 2014 Jul; 114(1):47-59. PubMed ID: 24854167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polymer Grafting Inside Wood Cellulose Fibers by Improved Hydroxyl Accessibility from Fiber Swelling.
    Olsén P; Herrera N; Berglund LA
    Biomacromolecules; 2020 Feb; 21(2):597-603. PubMed ID: 31769663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding the thermoplasticization mechanism of wood via esterification with fatty acids: A comparative study of the reactivity of cellulose, hemicelluloses and lignin.
    Sejati PS; Obounou Akong F; Fradet F; Gérardin P
    Carbohydr Polym; 2024 Jan; 324():121542. PubMed ID: 37985114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Xylem defense wood of Norway spruce compromised by the pathogenic white-rot fungus Heterobasidion parviporum shows a prolonged period of selective decay.
    Nagy NE; Ballance S; Kvaalen H; Fossdal CG; Solheim H; Hietala AM
    Planta; 2012 Oct; 236(4):1125-33. PubMed ID: 22644766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Analysis on SNPs linked with wood properties of Populus nigra L. gene resources].
    Ding MM; Huang QJ
    Yi Chuan; 2008 Jun; 30(6):795-800. PubMed ID: 18550506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting the most appropriate wood biomass for selected industrial applications: comparison of wood, pulping, and enzymatic treatments using fluorescent-tagged carbohydrate-binding modules.
    Bombeck PL; Khatri V; Meddeb-Mouelhi F; Montplaisir D; Richel A; Beauregard M
    Biotechnol Biofuels; 2017; 10():293. PubMed ID: 29225698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Natural Aging on Oak Wood Fire Resistance.
    Zachar M; Čabalová I; Kačíková D; Jurczyková T
    Polymers (Basel); 2021 Jun; 13(13):. PubMed ID: 34201879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical composition and pulping of date palm rachis and Posidonia oceanica--a comparison with other wood and non-wood fibre sources.
    Khiari R; Mhenni MF; Belgacem MN; Mauret E
    Bioresour Technol; 2010 Jan; 101(2):775-80. PubMed ID: 19766481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.