These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 38140681)
1. Partial Atomic Model of the Tailed Lactococcal Phage TP901-1 as Predicted by AlphaFold2: Revelations and Limitations. Mahony J; Goulet A; van Sinderen D; Cambillau C Viruses; 2023 Dec; 15(12):. PubMed ID: 38140681 [TBL] [Abstract][Full Text] [Related]
2. The Atomic Structure of the Phage Tuc2009 Baseplate Tripod Suggests that Host Recognition Involves Two Different Carbohydrate Binding Modules. Legrand P; Collins B; Blangy S; Murphy J; Spinelli S; Gutierrez C; Richet N; Kellenberger C; Desmyter A; Mahony J; van Sinderen D; Cambillau C mBio; 2016 Jan; 7(1):e01781-15. PubMed ID: 26814179 [TBL] [Abstract][Full Text] [Related]
3. Exploring Structural Diversity among Adhesion Devices Encoded by Lactococcal P335 Phages with AlphaFold2. Goulet A; Mahony J; Cambillau C; van Sinderen D Microorganisms; 2022 Nov; 10(11):. PubMed ID: 36422348 [TBL] [Abstract][Full Text] [Related]
6. The Ruiz-Cruz S; Erazo Garzon A; Cambillau C; Ortiz Charneco G; Lugli GA; Ventura M; Mahony J; van Sinderen D Appl Environ Microbiol; 2024 Sep; 90(9):e0069424. PubMed ID: 39132999 [TBL] [Abstract][Full Text] [Related]
7. Host genetic requirements for DNA release of lactococcal phage TP901-1. Ruiz-Cruz S; Erazo Garzon A; Kelleher P; Bottacini F; Breum SØ; Neve H; Heller KJ; Vogensen FK; Palussière S; Courtin P; Chapot-Chartier MP; Vinogradov E; Sadovskaya I; Mahony J; van Sinderen D Microb Biotechnol; 2022 Dec; 15(12):2875-2889. PubMed ID: 36259418 [TBL] [Abstract][Full Text] [Related]
8. Identification of the lower baseplate protein as the antireceptor of the temperate lactococcal bacteriophages TP901-1 and Tuc2009. Vegge CS; Vogensen FK; Mc Grath S; Neve H; van Sinderen D; Brøndsted L J Bacteriol; 2006 Jan; 188(1):55-63. PubMed ID: 16352821 [TBL] [Abstract][Full Text] [Related]
9. Structure, adsorption to host, and infection mechanism of virulent lactococcal phage p2. Bebeacua C; Tremblay D; Farenc C; Chapot-Chartier MP; Sadovskaya I; van Heel M; Veesler D; Moineau S; Cambillau C J Virol; 2013 Nov; 87(22):12302-12. PubMed ID: 24027307 [TBL] [Abstract][Full Text] [Related]
10. Structural characterization and assembly of the distal tail structure of the temperate lactococcal bacteriophage TP901-1. Vegge CS; Brøndsted L; Neve H; Mc Grath S; van Sinderen D; Vogensen FK J Bacteriol; 2005 Jun; 187(12):4187-97. PubMed ID: 15937180 [TBL] [Abstract][Full Text] [Related]
11. Visualizing a complete Siphoviridae member by single-particle electron microscopy: the structure of lactococcal phage TP901-1. Bebeacua C; Lai L; Vegge CS; Brøndsted L; van Heel M; Veesler D; Cambillau C J Virol; 2013 Jan; 87(2):1061-8. PubMed ID: 23135714 [TBL] [Abstract][Full Text] [Related]
12. Viral infection modulation and neutralization by camelid nanobodies. Desmyter A; Farenc C; Mahony J; Spinelli S; Bebeacua C; Blangy S; Veesler D; van Sinderen D; Cambillau C Proc Natl Acad Sci U S A; 2013 Apr; 110(15):E1371-9. PubMed ID: 23530214 [TBL] [Abstract][Full Text] [Related]
13. Structure and molecular assignment of lactococcal phage TP901-1 baseplate. Bebeacua C; Bron P; Lai L; Vegge CS; Brøndsted L; Spinelli S; Campanacci V; Veesler D; van Heel M; Cambillau C J Biol Chem; 2010 Dec; 285(50):39079-86. PubMed ID: 20937834 [TBL] [Abstract][Full Text] [Related]
14. Structure of the phage TP901-1 1.8 MDa baseplate suggests an alternative host adhesion mechanism. Veesler D; Spinelli S; Mahony J; Lichière J; Blangy S; Bricogne G; Legrand P; Ortiz-Lombardia M; Campanacci V; van Sinderen D; Cambillau C Proc Natl Acad Sci U S A; 2012 Jun; 109(23):8954-8. PubMed ID: 22611190 [TBL] [Abstract][Full Text] [Related]
15. Conserved and Diverse Traits of Adhesion Devices from Goulet A; Spinelli S; Mahony J; Cambillau C Viruses; 2020 May; 12(5):. PubMed ID: 32384698 [TBL] [Abstract][Full Text] [Related]
16. Molecular insights on the recognition of a Lactococcus lactis cell wall pellicle by the phage 1358 receptor binding protein. Farenc C; Spinelli S; Vinogradov E; Tremblay D; Blangy S; Sadovskaya I; Moineau S; Cambillau C J Virol; 2014 Jun; 88(12):7005-15. PubMed ID: 24719416 [TBL] [Abstract][Full Text] [Related]
17. Comparative genomics of lactococcal phages: insight from the complete genome sequence of Lactococcus lactis phage BK5-T. Desiere F; Mahanivong C; Hillier AJ; Chandry PS; Davidson BE; Brüssow H Virology; 2001 May; 283(2):240-52. PubMed ID: 11336549 [TBL] [Abstract][Full Text] [Related]
18. Morphology, genome sequence, and structural proteome of type phage P335 from Lactococcus lactis. Labrie SJ; Josephsen J; Neve H; Vogensen FK; Moineau S Appl Environ Microbiol; 2008 Aug; 74(15):4636-44. PubMed ID: 18539805 [TBL] [Abstract][Full Text] [Related]
19. Characterization of Lactococcus lactis phage 949 and comparison with other lactococcal phages. Samson JE; Moineau S Appl Environ Microbiol; 2010 Oct; 76(20):6843-52. PubMed ID: 20802084 [TBL] [Abstract][Full Text] [Related]
20. Mutational analysis of two structural genes of the temperate lactococcal bacteriophage TP901-1 involved in tail length determination and baseplate assembly. Pedersen M; Ostergaard S; Bresciani J; Vogensen FK Virology; 2000 Oct; 276(2):315-28. PubMed ID: 11040123 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]