BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38140944)

  • 1. Phytoremediation of an integrated poultry and aquaculture wastewater using sub-surface constructed wetland planted with
    Akadiri SA; Dada PO; Badejo AA; Adeosun OJ; Ogunrinde AT; Faloye OT
    Int J Phytoremediation; 2024 May; 26(7):1133-1143. PubMed ID: 38140944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Municipal wastewater treatment potential and metal accumulation strategies of Colocasia esculenta (L.) Schott and Typha latifolia L. in a constructed wetland.
    Rana V; Maiti SK
    Environ Monit Assess; 2018 May; 190(6):328. PubMed ID: 29730705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytoremediation of Water Using Phragmites karka and Veteveria nigritana in Constructed Wetland.
    Badejo AA; Sridhar MK; Coker AO; Ndambuki JM; Kupolati WK
    Int J Phytoremediation; 2015; 17(9):847-52. PubMed ID: 26151537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interspecific competition and their impacts on the growth of macrophytes and pollutants removal within constructed wetland microcosms treating domestic wastewater.
    Kumar S; Pratap B; Dubey D; Dutta V
    Int J Phytoremediation; 2022; 24(1):76-87. PubMed ID: 34053380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal accumulation from leachate by polyculture in crushed brick and steel slag using pilot-scale constructed wetland in the climate of Pakistan.
    Batool A
    Environ Sci Pollut Res Int; 2019 Oct; 26(30):31508-31521. PubMed ID: 31478177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficiency of Phragmites australis and Typha latifolia for heavy metal removal from wastewater.
    Kumari M; Tripathi BD
    Ecotoxicol Environ Saf; 2015 Feb; 112():80-6. PubMed ID: 25463857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative study on the performance of Typha latifolia and Cyperus Papyrus on the removal of heavy metals and enteric bacteria from wastewater by surface constructed wetlands.
    Hamad MTMH
    Chemosphere; 2020 Dec; 260():127551. PubMed ID: 32683013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utility of constructed wetlands for treatment of hospital effluent and antibiotic resistant bacteria in resource limited settings: A case study in Ujjain, India.
    Parashar V; Singh S; Purohit MR; Tamhankar AJ; Singh D; Kalyanasundaram M; Lundborg CS; Diwan V
    Water Environ Res; 2022 Sep; 94(9):e10783. PubMed ID: 36073662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of vertical flow constructed wetland in treatment of heavy metals from pulp and paper industry wastewater.
    Arivoli A; Mohanraj R; Seenivasan R
    Environ Sci Pollut Res Int; 2015 Sep; 22(17):13336-43. PubMed ID: 25940487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Treatment of industrial wastewater with two-stage constructed wetlands planted with Typha latifolia and Phragmites australis.
    Calheiros CS; Rangel AO; Castro PM
    Bioresour Technol; 2009 Jul; 100(13):3205-13. PubMed ID: 19289277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanistic understanding of the pollutant removal and transformation processes in the constructed wetland system.
    Malyan SK; Yadav S; Sonkar V; Goyal VC; Singh O; Singh R
    Water Environ Res; 2021 Oct; 93(10):1882-1909. PubMed ID: 34129692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Treatment of marine-aquaculture effluent by the multi-soil-layer (MSL) system and subsurface flow constructed wetland].
    Song Y; Huang YT; Ge C; Zhang H; Chen X; Zhang ZJ; Luo AC
    Huan Jing Ke Xue; 2014 Sep; 35(9):3436-42. PubMed ID: 25518662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of horizontal subsurface flow constructed wetlands to treat reverse osmosis concentrate of rolling wastewater.
    Xu J; Zhao G; Huang X; Guo H; Liu W
    Int J Phytoremediation; 2017 Mar; 19(3):262-269. PubMed ID: 27712090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The phytoremediation ability of a polyculture constructed wetland to treat boron from mine effluent.
    Türker OC; Böcük H; Yakar A
    J Hazard Mater; 2013 May; 252-253():132-41. PubMed ID: 23500796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in physico-chemical composition of wastewater by growing Phragmites australis and Typha latifolia in an arid environment in Saudi Arabia.
    Alquwaizany AS; Hussain G; Al-Zarah AI
    Environ Sci Pollut Res Int; 2022 Jun; 29(26):39838-39846. PubMed ID: 35112245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Livestock Wastewater Treatment in Constructed Wetlands for Agriculture Reuse.
    Dias S; Mucha AP; Duarte Crespo R; Rodrigues P; Almeida CMR
    Int J Environ Res Public Health; 2020 Nov; 17(22):. PubMed ID: 33228045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wetland treatment (HSSP) of wastewater from a milk-processing unit using Bambusa vulgaris, Typha latifolia and Cyperus rotundus.
    Tandon S; Inarkar M; Kumar R
    J Environ Sci Eng; 2010 Jan; 52(1):23-6. PubMed ID: 21114102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High Pb concentration stress on Typha latifolia growth and Pb removal in microcosm wetlands.
    Han J; Chen F; Zhou Y; Wang C
    Water Sci Technol; 2015; 71(11):1734-41. PubMed ID: 26038940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fate of heavy metals in vertical subsurface flow constructed wetlands treating secondary treated petroleum refinery wastewater in Kaduna, Nigeria.
    Mustapha HI; van Bruggen JJA; Lens PNL
    Int J Phytoremediation; 2018 Jan; 20(1):44-53. PubMed ID: 28598201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variation in extracellular enzyme activities and their influence on the performance of surface-flow constructed wetland microcosms (CWMs).
    Kumar S; Nand S; Dubey D; Pratap B; Dutta V
    Chemosphere; 2020 Jul; 251():126377. PubMed ID: 32143081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.