These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 38141210)

  • 1. TEFDTA: a transformer encoder and fingerprint representation combined prediction method for bonded and non-bonded drug-target affinities.
    Li Z; Ren P; Yang H; Zheng J; Bai F
    Bioinformatics; 2024 Jan; 40(1):. PubMed ID: 38141210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DTITR: End-to-end drug-target binding affinity prediction with transformers.
    Monteiro NRC; Oliveira JL; Arrais JP
    Comput Biol Med; 2022 Aug; 147():105772. PubMed ID: 35777085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AttentionDTA: Drug-Target Binding Affinity Prediction by Sequence-Based Deep Learning With Attention Mechanism.
    Zhao Q; Duan G; Yang M; Cheng Z; Li Y; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(2):852-863. PubMed ID: 35471889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drug-target affinity prediction method based on multi-scale information interaction and graph optimization.
    Zhu Z; Yao Z; Zheng X; Qi G; Li Y; Mazur N; Gao X; Gong Y; Cong B
    Comput Biol Med; 2023 Dec; 167():107621. PubMed ID: 37907030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TransVAE-DTA: Transformer and variational autoencoder network for drug-target binding affinity prediction.
    Zhou C; Li Z; Song J; Xiang W
    Comput Methods Programs Biomed; 2024 Feb; 244():108003. PubMed ID: 38181572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DataDTA: a multi-feature and dual-interaction aggregation framework for drug-target binding affinity prediction.
    Zhu Y; Zhao L; Wen N; Wang J; Wang C
    Bioinformatics; 2023 Sep; 39(9):. PubMed ID: 37688568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DeepCDA: deep cross-domain compound-protein affinity prediction through LSTM and convolutional neural networks.
    Abbasi K; Razzaghi P; Poso A; Amanlou M; Ghasemi JB; Masoudi-Nejad A
    Bioinformatics; 2020 Nov; 36(17):4633-4642. PubMed ID: 32462178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BACPI: a bi-directional attention neural network for compound-protein interaction and binding affinity prediction.
    Li M; Lu Z; Wu Y; Li Y
    Bioinformatics; 2022 Mar; 38(7):1995-2002. PubMed ID: 35043942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MGPLI: exploring multigranular representations for protein-ligand interaction prediction.
    Wang J; Hu J; Sun H; Xu M; Yu Y; Liu Y; Cheng L
    Bioinformatics; 2022 Oct; 38(21):4859-4867. PubMed ID: 36094335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning long- and short-term dependencies for improving drug-target binding affinity prediction using transformer and edge contraction pooling.
    Gao M; Jiang S; Ding W; Xu T; Lyu Z
    J Bioinform Comput Biol; 2024 Feb; 22(1):2350030. PubMed ID: 38567388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MolTrans: Molecular Interaction Transformer for drug-target interaction prediction.
    Huang K; Xiao C; Glass LM; Sun J
    Bioinformatics; 2021 May; 37(6):830-836. PubMed ID: 33070179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FSM-DDTR: End-to-end feedback strategy for multi-objective De Novo drug design using transformers.
    Monteiro NRC; Pereira TO; Machado ACD; Oliveira JL; Abbasi M; Arrais JP
    Comput Biol Med; 2023 Sep; 164():107285. PubMed ID: 37557054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Breaking the barriers of data scarcity in drug-target affinity prediction.
    Pei Q; Wu L; Zhu J; Xia Y; Xie S; Qin T; Liu H; Liu TY; Yan R
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37903413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting drug-target binding affinity through molecule representation block based on multi-head attention and skip connection.
    Zhang L; Wang CC; Chen X
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36411674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NerLTR-DTA: drug-target binding affinity prediction based on neighbor relationship and learning to rank.
    Ru X; Ye X; Sakurai T; Zou Q
    Bioinformatics; 2022 Mar; 38(7):1964-1971. PubMed ID: 35134828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ArkDTA: attention regularization guided by non-covalent interactions for explainable drug-target binding affinity prediction.
    Gim M; Choe J; Baek S; Park J; Lee C; Ju M; Lee S; Kang J
    Bioinformatics; 2023 Jun; 39(39 Suppl 1):i448-i457. PubMed ID: 37387164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ColdDTA: Utilizing data augmentation and attention-based feature fusion for drug-target binding affinity prediction.
    Fang K; Zhang Y; Du S; He J
    Comput Biol Med; 2023 Sep; 164():107372. PubMed ID: 37597410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effective drug-target interaction prediction with mutual interaction neural network.
    Li F; Zhang Z; Guan J; Zhou S
    Bioinformatics; 2022 Jul; 38(14):3582-3589. PubMed ID: 35652721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drug-target affinity prediction with extended graph learning-convolutional networks.
    Qi H; Yu T; Yu W; Liu C
    BMC Bioinformatics; 2024 Feb; 25(1):75. PubMed ID: 38365583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TeM-DTBA: time-efficient drug target binding affinity prediction using multiple modalities with Lasso feature selection.
    Liyaqat T; Ahmad T; Saxena C
    J Comput Aided Mol Des; 2023 Dec; 37(12):573-584. PubMed ID: 37777631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.