BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 38141226)

  • 1. Developing a computable phenotype for glioblastoma.
    Yan S; Melnick K; He X; Lyu T; Moor RSF; Still MEH; Mitchell DA; Shenkman EA; Wang H; Guo Y; Bian J; Ghiaseddin AP
    Neuro Oncol; 2024 Jun; 26(6):1163-1170. PubMed ID: 38141226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Develop and Validate a Computable Phenotype for the Identification of Alzheimer's Disease Patients Using Electronic Health Record Data.
    He X; Wei R; Huang Y; Chen Z; Lyu T; Bost S; Tong J; Li L; Zhou Y; Guo J; Tang H; Wang F; DeKosky S; Xu H; Chen Y; Zhang R; Xu J; Guo Y; Wu Y; Bian J
    medRxiv; 2024 Feb; ():. PubMed ID: 38370766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Computable Phenotype for the Identification of Sexual and Gender Minorities in Electronic Health Records.
    Li Y; He X; Wheldon C; Wu Y; Prosperi M; Shenkman EA; Jaffee MS; Guo J; Wang F; Guo Y; Bian J
    AMIA Annu Symp Proc; 2023; 2023():1057-1066. PubMed ID: 38222414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extraction of Unstructured Electronic Health Records to Evaluate Glioblastoma Treatment Patterns.
    Swaminathan A; Ren AL; Wu JY; Bhargava-Shah A; Lopez I; Srivastava U; Alexopoulos V; Pizzitola R; Bui B; Alkhani L; Lee S; Mohit N; Seo N; Macedo N; Cheng W; Wang W; Tran E; Thomas R; Gevaert O
    JCO Clin Cancer Inform; 2024 Jun; 8():e2300091. PubMed ID: 38857465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing research in symptomatic uterine fibroids with development of a computable phenotype for use with electronic health records.
    Hoffman SR; Vines AI; Halladay JR; Pfaff E; Schiff L; Westreich D; Sundaresan A; Johnson LS; Nicholson WK
    Am J Obstet Gynecol; 2018 Jun; 218(6):610.e1-610.e7. PubMed ID: 29432754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of Hypertension in Electronic Health Records Through Computable Phenotype Development and Validation for Use in Public Health Surveillance: Retrospective Study.
    Valvi N; McFarlane T; Allen KS; Gibson PJ; Dixon BE
    JMIR Form Res; 2023 Dec; 7():e46413. PubMed ID: 38150296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing Identification of People Living with HIV from Electronic Medical Records: Computable Phenotype Development and Validation.
    Liu Y; Siddiqi KA; Cook RL; Bian J; Squires PJ; Shenkman EA; Prosperi M; Jayaweera DT
    Methods Inf Med; 2021 Sep; 60(3-04):84-94. PubMed ID: 34592777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of Structured Electronic Health Records Data Elements for the Development of Computable Phenotypes to Identify Potential Adverse Events Associated with Intravenous Immunoglobulin Infusion.
    Hurst JH; Brucker A; Zhao C; Driscoll H; Hostetler HP; Phillips M; Rosenberg B; Samsky MD; Smith I; Reller ME; Strouse JJ; Zhou CK; Dores GM; Wong HL; Goldstein BA
    Drug Saf; 2023 Mar; 46(3):309-318. PubMed ID: 36826707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rule-based and machine learning algorithms identify patients with systemic sclerosis accurately in the electronic health record.
    Jamian L; Wheless L; Crofford LJ; Barnado A
    Arthritis Res Ther; 2019 Dec; 21(1):305. PubMed ID: 31888720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of an Algorithm for Identifying Ocular Conditions in Electronic Health Record Data.
    Stein JD; Rahman M; Andrews C; Ehrlich JR; Kamat S; Shah M; Boese EA; Woodward MA; Cowall J; Trager EH; Narayanaswamy P; Hanauer DA
    JAMA Ophthalmol; 2019 May; 137(5):491-497. PubMed ID: 30789656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparing Natural Language Processing and Structured Medical Data to Develop a Computable Phenotype for Patients Hospitalized Due to COVID-19: Retrospective Analysis.
    Chang F; Krishnan J; Hurst JH; Yarrington ME; Anderson DJ; O'Brien EC; Goldstein BA
    JMIR Med Inform; 2023 Aug; 11():e46267. PubMed ID: 37621195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developing a FHIR-based EHR phenotyping framework: A case study for identification of patients with obesity and multiple comorbidities from discharge summaries.
    Hong N; Wen A; Stone DJ; Tsuji S; Kingsbury PR; Rasmussen LV; Pacheco JA; Adekkanattu P; Wang F; Luo Y; Pathak J; Liu H; Jiang G
    J Biomed Inform; 2019 Nov; 99():103310. PubMed ID: 31622801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing identification of resistant hypertension: Computable phenotype development and validation.
    McDonough CW; Babcock K; Chucri K; Crawford DC; Bian J; Modave F; Cooper-DeHoff RM; Hogan WR
    Pharmacoepidemiol Drug Saf; 2020 Nov; 29(11):1393-1401. PubMed ID: 32844549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developing and Validating a Computable Phenotype for the Identification of Transgender and Gender Nonconforming Individuals and Subgroups.
    Guo Y; He X; Lyu T; Zhang H; Wu Y; Yang X; Chen Z; Markham MJ; Modave F; Xie M; Hogan W; Harle CA; Shenkman EA; Bian J
    AMIA Annu Symp Proc; 2020; 2020():514-523. PubMed ID: 33936425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Natural language processing to identify lupus nephritis phenotype in electronic health records.
    Deng Y; Pacheco JA; Ghosh A; Chung A; Mao C; Smith JC; Zhao J; Wei WQ; Barnado A; Dorn C; Weng C; Liu C; Cordon A; Yu J; Tedla Y; Kho A; Ramsey-Goldman R; Walunas T; Luo Y
    BMC Med Inform Decis Mak; 2024 Mar; 22(Suppl 2):348. PubMed ID: 38433189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and evaluation of a computable phenotype to identify pediatric patients with leukemia and lymphoma treated with chemotherapy using electronic health record data.
    Phillips CA; Razzaghi H; Aglio T; McNeil MJ; Salvesen-Quinn M; Sopfe J; Wilkes JJ; Forrest CB; Bailey LC
    Pediatr Blood Cancer; 2019 Sep; 66(9):e27876. PubMed ID: 31207054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and evaluation of an EHR-based computable phenotype for identification of pediatric Crohn's disease patients in a National Pediatric Learning Health System.
    Khare R; Kappelman MD; Samson C; Pyrzanowski J; Darwar RA; Forrest CB; Bailey CC; Margolis P; Dempsey A;
    Learn Health Syst; 2020 Oct; 4(4):e10243. PubMed ID: 33083542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and Validation of a Sickle Cell Disease Cohort Within Electronic Health Records.
    Michalik DE; Taylor BW; Panepinto JA
    Acad Pediatr; 2017 Apr; 17(3):283-287. PubMed ID: 27979750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated feature selection of predictors in electronic medical records data.
    Gronsbell J; Minnier J; Yu S; Liao K; Cai T
    Biometrics; 2019 Mar; 75(1):268-277. PubMed ID: 30353541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feasibility of Using EN 13606 Clinical Archetypes for Defining Computable Phenotypes.
    Tapuria A; Kalra D; Curcin V
    Stud Health Technol Inform; 2020 Jun; 270():228-232. PubMed ID: 32570380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.