These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
65. Effects of end-expiratory lung volume versus PaO Rollas K; Hanci P; Topeli A Exp Lung Res; 2022 Feb; 48(1):12-22. PubMed ID: 34957895 [TBL] [Abstract][Full Text] [Related]
66. Patterns of Use of Adjunctive Therapies in Patients With Early Moderate to Severe ARDS: Insights From the LUNG SAFE Study. Duggal A; Rezoagli E; Pham T; McNicholas BA; Fan E; Bellani G; Rubenfeld G; Pesenti AM; Laffey JG; Chest; 2020 Jun; 157(6):1497-1505. PubMed ID: 32088180 [TBL] [Abstract][Full Text] [Related]
67. ECMO criteria for influenza A (H1N1)-associated ARDS: role of transpulmonary pressure. Grasso S; Terragni P; Birocco A; Urbino R; Del Sorbo L; Filippini C; Mascia L; Pesenti A; Zangrillo A; Gattinoni L; Ranieri VM Intensive Care Med; 2012 Mar; 38(3):395-403. PubMed ID: 22323077 [TBL] [Abstract][Full Text] [Related]
68. The effects of airway pressure release ventilation on respiratory mechanics in extrapulmonary lung injury. Kollisch-Singule M; Emr B; Jain SV; Andrews P; Satalin J; Liu J; Porcellio E; Kenyon V; Wang G; Marx W; Gatto LA; Nieman GF; Habashi NM Intensive Care Med Exp; 2015 Dec; 3(1):35. PubMed ID: 26694915 [TBL] [Abstract][Full Text] [Related]
69. [Effect of lung strain on breathing mechanics in dogs with acute respiratory distress syndrome]. Liu Q; Guo Y; Shan M; Lan C; Chen R Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2018 Sep; 30(9):872-876. PubMed ID: 30309414 [TBL] [Abstract][Full Text] [Related]
70. Different contributions from lungs and chest wall to respiratory mechanics in mice, rats, and rabbits. Südy R; Fodor GH; Dos Santos Rocha A; Schranc Á; Tolnai J; Habre W; Peták F J Appl Physiol (1985); 2019 Jul; 127(1):198-204. PubMed ID: 31161880 [TBL] [Abstract][Full Text] [Related]
71. Epidemiology, Patterns of Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries. Bellani G; Laffey JG; Pham T; Fan E; Brochard L; Esteban A; Gattinoni L; van Haren F; Larsson A; McAuley DF; Ranieri M; Rubenfeld G; Thompson BT; Wrigge H; Slutsky AS; Pesenti A; ; JAMA; 2016 Feb; 315(8):788-800. PubMed ID: 26903337 [TBL] [Abstract][Full Text] [Related]
72. [Implementation of acute respiratory distress syndrome treatment strategies by critical care physicians in Liaoning Province: a multi-center investigation]. Yu S; Ma Y; Li X Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2020 Jun; 32(6):754-759. PubMed ID: 32684226 [TBL] [Abstract][Full Text] [Related]
73. Pulse Pressure Variation Adjusted by Respiratory Changes in Pleural Pressure, Rather Than by Tidal Volume, Reliably Predicts Fluid Responsiveness in Patients With Acute Respiratory Distress Syndrome. Liu Y; Wei LQ; Li GQ; Yu X; Li GF; Li YM Crit Care Med; 2016 Feb; 44(2):342-51. PubMed ID: 26457754 [TBL] [Abstract][Full Text] [Related]
74. Dynamic hyperinflation and intrinsic positive end-expiratory pressure in ARDS patients. Coppola S; Caccioppola A; Froio S; Ferrari E; Gotti M; Formenti P; Chiumello D Crit Care; 2019 Nov; 23(1):375. PubMed ID: 31775830 [TBL] [Abstract][Full Text] [Related]
75. Flow-controlled expiration (FLEX) homogenizes pressure distribution in a four compartment physical model of the respiratory system with chest wall compliance. Höhne T; Wenzel C; Schumann S Physiol Meas; 2021 Jul; 42(7):. PubMed ID: 34192675 [No Abstract] [Full Text] [Related]
76. Comparison of onset of neuromuscular blockade with electromyographic and acceleromyographic monitoring: a prospective clinical trial. Chaves-Cardona HE; Fouda EA; Hernandez-Torres V; Torp KD; Logvinov II; Heckman MG; Renew JR Braz J Anesthesiol; 2023; 73(4):393-400. PubMed ID: 37137388 [TBL] [Abstract][Full Text] [Related]
77. Effects of different positive end-expiratory pressure titration strategies on mechanical power during ultraprotective ventilation in ARDS patients treated with veno-venous extracorporeal membrane oxygenation: A prospective interventional study. Boesing C; Schaefer L; Graf PT; Pelosi P; Rocco PRM; Luecke T; Krebs J J Crit Care; 2024 Feb; 79():154406. PubMed ID: 37690365 [TBL] [Abstract][Full Text] [Related]
78. Effect of depth of neuromuscular blockade on the abdominal space during pneumoperitoneum establishment in laparoscopic surgery. Barrio J; Errando CL; San Miguel G; Salas BI; Raga J; Carrión JL; García-Ramón J; Gallego J J Clin Anesth; 2016 Nov; 34():197-203. PubMed ID: 27687373 [TBL] [Abstract][Full Text] [Related]
79. Comparison between the effects of deep and moderate neuromuscular blockade during transurethral resection of bladder tumor on endoscopic surgical condition and recovery profile: a prospective, randomized, and controlled trial. Koo CH; Chung SH; Kim BG; Min BH; Lee SC; Oh AY; Jeon YT; Ryu JH World J Urol; 2019 Feb; 37(2):359-365. PubMed ID: 29967948 [TBL] [Abstract][Full Text] [Related]
80. Low-pressure pneumoperitoneum with deep neuromuscular blockade versus standard pressure pneumoperitoneum in patients undergoing laparoscopic cholecystectomy for gallstone disease: a non-inferiority randomized control trial. Arumugaswamy PR; Chumber S; Rathore YS; Maitra S; Bhattacharjee HK; Bansal VK; Aggarwal S; Dhar A; Asuri K; Kataria K; Ranjan P Surg Endosc; 2024 Jan; 38(1):449-459. PubMed ID: 38012441 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]