BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 38141976)

  • 1. Aging microplastics enhances the adsorption of pharmaceuticals in freshwater.
    Moura DS; Pestana CJ; Moffat CF; Gkoulemani N; Hui J; Irvine JTS; Lawton LA
    Sci Total Environ; 2024 Feb; 912():169467. PubMed ID: 38141976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption of cyanotoxins on polypropylene and polyethylene terephthalate: Microplastics as vector of eight microcystin analogues.
    Moura DS; Pestana CJ; Moffat CF; Hui J; Irvine JTS; Edwards C; Lawton LA
    Environ Pollut; 2022 Jun; 303():119135. PubMed ID: 35283205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterisation of microplastics is key for reliable data interpretation.
    Moura DS; Pestana CJ; Moffat CF; Hui J; Irvine JTS; Lawton LA
    Chemosphere; 2023 Aug; 331():138691. PubMed ID: 37076081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption of a diverse range of pharmaceuticals to polyethylene microplastics in wastewater and their desorption in environmental matrices.
    McDougall L; Thomson L; Brand S; Wagstaff A; Lawton LA; Petrie B
    Sci Total Environ; 2022 Feb; 808():152071. PubMed ID: 34863765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of polypropylene, polyvinyl chloride, polyethylene terephthalate, polyurethane, high-density polyethylene, and polystyrene microplastic on Nelumbo nucifera (Lotus) in water and sediment.
    Esterhuizen M; Kim YJ
    Environ Sci Pollut Res Int; 2022 Mar; 29(12):17580-17590. PubMed ID: 34669136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Can aged microplastics be transport vectors for organic micropollutants? - Sorption and phytotoxicity tests.
    Miranda MN; Lado Ribeiro AR; Silva AMT; Pereira MFR
    Sci Total Environ; 2022 Dec; 850():158073. PubMed ID: 35981591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction mechanism of water-soluble inorganic arsenic onto pristine nanoplastics.
    Ortega DE; Cortés-Arriagada D
    Chemosphere; 2024 Feb; 350():141147. PubMed ID: 38195016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Occurrence of polycyclic aromatic hydrocarbons, microplastics and biofilms in Alqueva surface water at touristic spots.
    Raposo A; Mansilha C; Veber A; Melo A; Rodrigues J; Matias R; Rebelo H; Grossinho J; Cano M; Almeida C; Nogueira ID; Puskar L; Schade U; Jordao L
    Sci Total Environ; 2022 Dec; 850():157983. PubMed ID: 35973540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sorption of pharmaceuticals on the surface of microplastics.
    Puckowski A; Cwięk W; Mioduszewska K; Stepnowski P; Białk-Bielińska A
    Chemosphere; 2021 Jan; 263():127976. PubMed ID: 32835979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatiotemporal distribution and potential sources of atmospheric microplastic deposition in a semiarid urban environment of Northwest China.
    Liu Z; Liu X; Bai Y; Wei H; Lu J
    Environ Sci Pollut Res Int; 2023 Jun; 30(29):74372-74385. PubMed ID: 37208508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyamide microplastics in wastewater as vectors of cationic pharmaceutical drugs.
    Wagstaff A; Lawton LA; Petrie B
    Chemosphere; 2022 Feb; 288(Pt 2):132578. PubMed ID: 34656621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyamide microplastics as better environmental vectors of Cr(VI) in comparison to polyethylene and polypropylene microplastics.
    Shao X; Zhang Q; Liang W; Gong K; Fu M; Saif S; Peng C; Zhang W
    Mar Pollut Bull; 2023 Jan; 186():114492. PubMed ID: 36535232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pervasiveness and characteristics of microplastics in surface water and sediment of the Buriganga River, Bangladesh.
    Islam MS; Islam Z; Hasan MR
    Chemosphere; 2022 Nov; 307(Pt 3):135945. PubMed ID: 35944680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption of antibiotics on microplastics.
    Li J; Zhang K; Zhang H
    Environ Pollut; 2018 Jun; 237():460-467. PubMed ID: 29510365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption behavior of polyamide microplastics as a vector of the cyanotoxin microcystin-LR in environmental freshwaters.
    Kim N; Kim SY; Lee SW; Lee EH
    J Hazard Mater; 2023 Mar; 446():130683. PubMed ID: 36610341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A case study on small-size microplastics in water and snails in an urban river.
    An L; Cui T; Zhang Y; Liu H
    Sci Total Environ; 2022 Nov; 847():157461. PubMed ID: 35868384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Occurrence and fate of microplastics from a water source to two different drinking water treatment plants in a megacity in eastern China.
    Han Z; Jiang J; Xia J; Yan C; Cui C
    Environ Pollut; 2024 Apr; 346():123546. PubMed ID: 38369092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cross-sectional microstructural analysis to evaluate the crack growth pattern of weathered marine plastics.
    Takahashi Y; Tanaka K; Kajiwara T; Suzuki G; Osako M; Kuramochi H
    Chemosphere; 2023 Aug; 331():138794. PubMed ID: 37116724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sorption of sulfamethazine onto different types of microplastics: A combined experimental and molecular dynamics simulation study.
    Guo X; Liu Y; Wang J
    Mar Pollut Bull; 2019 Aug; 145():547-554. PubMed ID: 31590822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The atmospheric microplastics deposition contributes to microplastic pollution in urban waters.
    Sun J; Peng Z; Zhu ZR; Fu W; Dai X; Ni BJ
    Water Res; 2022 Oct; 225():119116. PubMed ID: 36152440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.