These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 38142667)

  • 41. Characterizing viscoelastic properties of human melanoma tissue using Prony series.
    Park S; Chien AL; Brown ID; Chen J
    Front Bioeng Biotechnol; 2023; 11():1162880. PubMed ID: 37091343
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A mathematical model for viscoelastic properties of biological soft tissue.
    Xi M; Yun G; Narsu B
    Theory Biosci; 2022 Feb; 141(1):13-25. PubMed ID: 35112309
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Viscoelastic properties of tissue conditioners--stress relaxation test using Maxwell model analogy.
    Murata H; Shigeto N; Hamada T
    J Oral Rehabil; 1990 Jul; 17(4):365-75. PubMed ID: 2213332
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Modeling of the viscoelastic behavior of collagen gel from dynamic oscillatory shear measurements.
    Li H; Zhang Y
    Biorheology; 2014; 51(6):369-80. PubMed ID: 25633438
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Viscoelastic characterizations of acellular dermal matrix (ADM) preparations for use as injectable implants.
    Ho HO; Tsai YT; Chen RN; Sheu MT
    J Biomed Mater Res A; 2004 Jul; 70(1):83-96. PubMed ID: 15174112
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Viscoelastic shear lag model to predict the micromechanical behavior of tendon under dynamic tensile loading.
    Wu J; Yuan H; Li L; Fan K; Qian S; Li B
    J Theor Biol; 2018 Jan; 437():202-213. PubMed ID: 29111420
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Deciphering load attenuation mechanisms of the dentin-enamel junction: Insights from a viscoelastic constitutive model.
    Hasegawa M; Tanaka R; Zhong J; Kobayashi M; Manabe A; Shibata Y
    Acta Biomater; 2023 Nov; 171():193-201. PubMed ID: 37669711
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A generalized Maxwell model for creep behavior of artery opening angle.
    Zhang W; Guo X; Kassab GS
    J Biomech Eng; 2008 Oct; 130(5):054502. PubMed ID: 19045526
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparative study of different mechanical models for identification of viscoelastic parameters of cryopreserved rabbit carotid arteries.
    Zhao G; Zheng YX; Yu F; Liu ZF; Lei D; Gao DY
    Cryo Letters; 2008; 29(4):277-83. PubMed ID: 19137190
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nonlinear viscoelastic properties of human dentin under uniaxial tension.
    Emamian A; Aghajani F; Safshekan F; Tafazzoli-Shadpour M
    Dent Mater; 2021 Feb; 37(2):e59-e68. PubMed ID: 33279222
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Linear and Nonlinear Viscoelastic Arterial Wall Models: Application on Animals.
    Ghigo AR; Wang XF; Armentano R; Fullana JM; Lagrée PY
    J Biomech Eng; 2017 Jan; 139(1):. PubMed ID: 27685359
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Methodologies and models for measuring viscoelastic properties of cancer cells: Towards a universal classification.
    Ovalle-Flores L; Rodríguez-Nieto M; Zárate-Triviño D; Rodríguez-Padilla C; Menchaca JL
    J Mech Behav Biomed Mater; 2023 Apr; 140():105734. PubMed ID: 36848744
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Measuring mechanical wave speed, dispersion, and viscoelastic modulus of the cornea using optical coherence elastography.
    Ramier A; Tavakol B; Yun SH
    Opt Express; 2019 Jun; 27(12):16635-16649. PubMed ID: 31252887
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A model of lung parenchyma stress relaxation using fractional viscoelasticity.
    Dai Z; Peng Y; Mansy HA; Sandler RH; Royston TJ
    Med Eng Phys; 2015 Aug; 37(8):752-8. PubMed ID: 26050200
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Evaluating the Guo-Campanella viscoelastic model.
    Augusto PED; Miano AC; Rojas ML
    J Texture Stud; 2018 Feb; 49(1):121-128. PubMed ID: 28836665
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization of blood clot viscoelasticity by dynamic ultrasound elastography and modeling of the rheological behavior.
    Schmitt C; Hadj Henni A; Cloutier G
    J Biomech; 2011 Feb; 44(4):622-9. PubMed ID: 21122863
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dynamic viscoelastic models of human skin using optical elastography.
    Kearney SP; Khan A; Dai Z; Royston TJ
    Phys Med Biol; 2015 Sep; 60(17):6975-90. PubMed ID: 26305137
    [TBL] [Abstract][Full Text] [Related]  

  • 58. In vivo characterization of viscoelastic properties of human skin using dynamic micro-indentation.
    Boyer G; Zahouani H; Le Bot A; Laquieze L
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():4584-7. PubMed ID: 18003026
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Validity of viscoelastic models of blood vessel wall.
    Orosz M; Molnárka G; Nádasy G; Raffai G; Kozmann G; Monos E
    Acta Physiol Hung; 1999; 86(3-4):265-71. PubMed ID: 10943658
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Modeling of viscoelastic behavior of dental chemically activated resin composites during curing.
    Dauvillier BS; Hübsch PF; Aarnts MP; Feilzer AJ
    J Biomed Mater Res; 2001; 58(1):16-26. PubMed ID: 11152993
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.