These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38142806)

  • 1. Dual lignin-derived polymeric system for peptone removal from simulated wastewater.
    Wang Y; Wang Q; Sabaghi S; Kaboli A; Soltani F; Kang K; Kongvarhodom C; Fatehi P
    Environ Pollut; 2024 Feb; 343():123142. PubMed ID: 38142806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual lignin-derived polymeric systems for hazardous ion removals.
    Sabaghi S; Alipoormazandarani N; Gao W; Fatehi P
    J Hazard Mater; 2021 Sep; 417():125970. PubMed ID: 33975163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced flocculation of aluminum oxide particles by lignin-based flocculants in dual polymer systems.
    Salaghi A; Diaz-Baca JA; Fatehi P
    J Environ Manage; 2023 Feb; 328():116999. PubMed ID: 36516704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cationic Lignin Polymers as Flocculant for Municipal Wastewater.
    Moore C; Gao W; Fatehi P
    Polymers (Basel); 2021 Nov; 13(22):. PubMed ID: 34833170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cationic High Molecular Weight Lignin Polymer: A Flocculant for the Removal of Anionic Azo-Dyes from Simulated Wastewater.
    Wang S; Kong F; Fatehi P; Hou Q
    Molecules; 2018 Aug; 23(8):. PubMed ID: 30103485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenomenological Changes in Lignin Following Polymerization and Its Effects on Flocculating Clay Particles.
    Sabaghi S; Fatehi P
    Biomacromolecules; 2019 Oct; 20(10):3940-3951. PubMed ID: 31498610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of boron from ceramic industry wastewater by adsorption-flocculation mechanism using palm oil mill boiler (POMB) bottom ash and polymer.
    Chong MF; Lee KP; Chieng HJ; Syazwani Binti Ramli II
    Water Res; 2009 Jul; 43(13):3326-34. PubMed ID: 19487007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flocculation of kaolin particles with cationic lignin polymers.
    Hasan A; Fatehi P
    Sci Rep; 2019 Feb; 9(1):2672. PubMed ID: 30804391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of Anionic and Cationic Pulp-Based Flocculants With Diverse Lignin Contents for Application in Effluent Treatment From the Textile Industry: Flocculation Monitoring.
    Grenda K; Gamelas JAF; Arnold J; Cayre OJ; Rasteiro MG
    Front Chem; 2020; 8():5. PubMed ID: 32083051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cationic-modified cyclodextrin nanosphere/anionic polymer as flocculation/sorption systems.
    Xiao H; Cezar N
    J Colloid Interface Sci; 2005 Mar; 283(2):406-13. PubMed ID: 15721912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption and flocculation by polymers and polymer mixtures.
    Gregory J; Barany S
    Adv Colloid Interface Sci; 2011 Nov; 169(1):1-12. PubMed ID: 21762869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cationic Pullulan Derivatives Based Flocculants for Removal of Some Metal Oxides from Simulated Wastewater.
    Ghimici L; Nafureanu MM; Constantin M
    Int J Mol Sci; 2023 Feb; 24(5):. PubMed ID: 36901814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-pot preparation of zwitterion-type lignin polymers.
    Guo Y; Gao W; Kong F; Fatehi P
    Int J Biol Macromol; 2019 Nov; 140():429-440. PubMed ID: 31425764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioflocculants from wastewater: Insights into adsorption affinity, flocculation mechanisms and mixed particle flocculation based on biopolymer size-fractionation.
    Ajao V; Fokkink R; Leermakers F; Bruning H; Rijnaarts H; Temmink H
    J Colloid Interface Sci; 2021 Jan; 581(Pt B):533-544. PubMed ID: 32814184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of polymer selection and dose on the incorporation of ballasting agents onto wastewater aggregates.
    Murujew O; Geoffroy J; Fournie E; Socionovo Gioacchini E; Wilson A; Vale P; Jefferson B; Pidou M
    Water Res; 2020 Mar; 170():115346. PubMed ID: 31801097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of Sulfonated Lignin-Starch Polymer and Its Use As a Flocculant.
    Diaz-Baca JA; Salaghi A; Fatehi P
    Biomacromolecules; 2023 Mar; 24(3):1400-1416. PubMed ID: 36802502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flocculation performance of lignin-based flocculant during reactive blue dye removal: comparison with commercial flocculants.
    Guo K; Gao B; Li R; Wang W; Yue Q; Wang Y
    Environ Sci Pollut Res Int; 2018 Jan; 25(3):2083-2095. PubMed ID: 29199367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of total cyanide in coking wastewater during a coagulation process: significance of organic polymers.
    Shen J; Zhao H; Cao H; Zhang Y; Chen Y
    J Environ Sci (China); 2014 Feb; 26(2):231-9. PubMed ID: 25076513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cationic xylan- (2-methacryloyloxyethyl trimethyl ammonium chloride) polymer as a flocculant for pulping wastewater.
    Chen X; Si C; Fatehi P
    Carbohydr Polym; 2018 Apr; 186():358-366. PubMed ID: 29455998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual starch-polyacrylamide polymer system for improved flocculation.
    Lapointe M; Barbeau B
    Water Res; 2017 Nov; 124():202-209. PubMed ID: 28759792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.