These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 38142864)

  • 1. Clinical Progress in Hepatic Targeting for Novel Prophylactic Therapies in Hereditary Angioedema.
    Riedl MA; Bordone L; Revenko A; Newman KB; Cohn DM
    J Allergy Clin Immunol Pract; 2024 Apr; 12(4):911-918. PubMed ID: 38142864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specific Targeting of Plasma Kallikrein for Treatment of Hereditary Angioedema: A Revolutionary Decade.
    Busse P; Kaplan A
    J Allergy Clin Immunol Pract; 2022 Mar; 10(3):716-722. PubMed ID: 34838707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The future of therapeutic options for hereditary angioedema.
    Smith TD; Riedl MA
    Ann Allergy Asthma Immunol; 2024 Oct; 133(4):380-390. PubMed ID: 38679158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kallikrein inhibitors for angioedema: the progress of preclinical and early phase studies.
    Farkas H; Balla Z
    Expert Opin Investig Drugs; 2024 Mar; 33(3):191-200. PubMed ID: 38366937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A phase 2 open-label extension study of prekallikrein inhibition with donidalorsen for hereditary angioedema.
    Petersen RS; Bordone L; Riedl MA; Tachdjian R; Craig TJ; Lumry WR; Manning ME; Bernstein JA; Raasch J; Zuraw BL; Deng Y; Newman KB; Alexander VJ; Lui C; Schneider E; Cohn DM
    Allergy; 2024 Mar; 79(3):724-734. PubMed ID: 38009241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic pathways in the pathogenesis of hereditary angioedema: the role of C1 inhibitor therapy.
    Kaplan AP
    J Allergy Clin Immunol; 2010 Nov; 126(5):918-25. PubMed ID: 20889195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. IONIS-PKK
    Ferrone JD; Bhattacharjee G; Revenko AS; Zanardi TA; Warren MS; Derosier FJ; Viney NJ; Pham NC; Kaeser GE; Baker BF; Schneider E; Hughes SG; Monia BP; MacLeod AR
    Nucleic Acid Ther; 2019 Apr; 29(2):82-91. PubMed ID: 30817230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Treatment of hereditary angioedema-single or multiple pathways to the rescue.
    Valerieva A; Longhurst HJ
    Front Allergy; 2022; 3():952233. PubMed ID: 36172291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. COVID-19 and hereditary angioedema: Incidence, outcomes, and mechanistic implications.
    Veronez CL; Christiansen SC; Smith TD; Riedl MA; Zuraw BL
    Allergy Asthma Proc; 2021 Nov; 42(6):506-514. PubMed ID: 34871158
    [No Abstract]   [Full Text] [Related]  

  • 10. Preventive Treatment of Hereditary Angioedema: A Review of Phase III Clinical Trial Data for Subcutaneous C1 Inhibitor and Relevance for Patient Management.
    West JB; Poarch K; Lumry WR
    Clin Ther; 2021 Dec; 43(12):2154-2166.e1. PubMed ID: 34879971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contact System Activation and Bradykinin Generation in Angioedema: Laboratory Assessment and Biomarker Utilization.
    Christiansen SC; Zuraw BL
    Immunol Allergy Clin North Am; 2024 Aug; 44(3):543-560. PubMed ID: 38937015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pathophysiology of hereditary angioedema.
    Zuraw BL; Christiansen SC
    Am J Rhinol Allergy; 2011; 25(6):373-8. PubMed ID: 22185738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. sgp120 and the contact system in hereditary angioedema: A diagnostic tool in HAE with normal C1 inhibitor.
    Larrauri B; Hester CG; Jiang H; Miletic VD; Malbran A; Bork K; Kaplan A; Frank M
    Mol Immunol; 2020 Mar; 119():27-34. PubMed ID: 31955064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Factor XII-independent activation of the bradykinin-forming cascade: Implications for the pathogenesis of hereditary angioedema types I and II.
    Joseph K; Tholanikunnel BG; Bygum A; Ghebrehiwet B; Kaplan AP
    J Allergy Clin Immunol; 2013 Aug; 132(2):470-5. PubMed ID: 23672780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Update on therapeutic developments for hereditary angioedema.
    Christiansen SC; Zuraw BL
    Allergy Asthma Proc; 2009; 30(5):500-5. PubMed ID: 19843404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR-Cas9 In Vivo Gene Editing of
    Longhurst HJ; Lindsay K; Petersen RS; Fijen LM; Gurugama P; Maag D; Butler JS; Shah MY; Golden A; Xu Y; Boiselle C; Vogel JD; Abdelhady AM; Maitland ML; McKee MD; Seitzer J; Han BW; Soukamneuth S; Leonard J; Sepp-Lorenzino L; Clark ED; Lebwohl D; Cohn DM
    N Engl J Med; 2024 Feb; 390(5):432-441. PubMed ID: 38294975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recombinant human C1 esterase inhibitor for the treatment of hereditary angioedema due to C1 inhibitor deficiency (C1-INH-HAE).
    Sabharwal G; Craig T
    Expert Rev Clin Immunol; 2015 Mar; 11(3):319-27. PubMed ID: 25669442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hereditary angioedema: Pathophysiology (HAE type I, HAE type II, and HAE nC1-INH).
    Wedner HJ
    Allergy Asthma Proc; 2020 Nov; 41(Suppl 1):S14-S17. PubMed ID: 33109319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pathogenic mechanisms of bradykinin mediated diseases: dysregulation of an innate inflammatory pathway.
    Kaplan AP; Joseph K
    Adv Immunol; 2014; 121():41-89. PubMed ID: 24388213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Administration of conestat alfa, human C1 esterase inhibitor and icatibant in the treatment of acute angioedema attacks in adults with hereditary angioedema due to C1 esterase inhibitor deficiency. Treatment comparison based on systematic review results].
    Kawalec P; Holko P; Paszulewicz A; Obtułowicz K
    Pneumonol Alergol Pol; 2013; 81(2):95-104. PubMed ID: 23420425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.