These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 38142964)

  • 1. Autophagy-modulating biomembrane nanostructures: A robust anticancer weapon by modulating the inner and outer cancer environment.
    Zhang X; Zhang M; Cui H; Zhang T; Wu L; Xu C; Yin C; Gao J
    J Control Release; 2024 Feb; 366():85-103. PubMed ID: 38142964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomembrane nanostructures: Multifunctional platform to enhance tumor chemoimmunotherapy via effective drug delivery.
    Jiang X; Wu L; Zhang M; Zhang T; Chen C; Wu Y; Yin C; Gao J
    J Control Release; 2023 Sep; 361():510-533. PubMed ID: 37567505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoparticles augment the therapeutic window of RT and immunotherapy for treating cancers: pivotal role of autophagy.
    Wu YH; Chen RJ; Chiu HW; Yang LX; Wang YL; Chen YY; Yeh YL; Liao MY; Wang YJ
    Theranostics; 2023; 13(1):40-58. PubMed ID: 36593951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomembrane-based nanostructures for cancer targeting and therapy: From synthetic liposomes to natural biomembranes and membrane-vesicles.
    Wang J; Zhu M; Nie G
    Adv Drug Deliv Rev; 2021 Nov; 178():113974. PubMed ID: 34530015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploiting autophagy-regulative nanomaterials for activation of dendritic cells enables reinforced cancer immunotherapy.
    Guan YH; Wang N; Deng ZW; Chen XG; Liu Y
    Biomaterials; 2022 Mar; 282():121434. PubMed ID: 35202930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emerging role of autophagy in anti-tumor immunity: Implications for the modulation of immunotherapy resistance.
    Jiang T; Chen X; Ren X; Yang JM; Cheng Y
    Drug Resist Updat; 2021 May; 56():100752. PubMed ID: 33765484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomembrane-Based Nanostructure- and Microstructure-Loaded Hydrogels for Promoting Chronic Wound Healing.
    Liu WS; Liu Y; Gao J; Zheng H; Lu ZM; Li M
    Int J Nanomedicine; 2023; 18():385-411. PubMed ID: 36703725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Autophagy drives plasticity and functional polarization of tumor-associated macrophages.
    Kuo WT; Chang JM; Chen CC; Tsao N; Chang CP
    IUBMB Life; 2022 Feb; 74(2):157-169. PubMed ID: 34467634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploiting Autophagy-Dependent Neoantigen Presentation in Tumor Microenvironment.
    Koustas E; Trifylli EM; Sarantis P; Papadopoulos N; Papanikolopoulos K; Aloizos G; Damaskos C; Garmpis N; Garmpi A; Matthaios D; Karamouzis MV
    Genes (Basel); 2023 Feb; 14(2):. PubMed ID: 36833401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ZnO nanomaterials target mitochondrial apoptosis and mitochondrial autophagy pathways in cancer cells.
    Li Y; Li J; Lu Y; Ma Y
    Cell Biochem Funct; 2024 Jan; 42(1):e3909. PubMed ID: 38269499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hypoxia-modulatory nanomaterials to relieve tumor hypoxic microenvironment and enhance immunotherapy: Where do we stand?
    Yuan CS; Deng ZW; Qin D; Mu YZ; Chen XG; Liu Y
    Acta Biomater; 2021 Apr; 125():1-28. PubMed ID: 33639310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surmounting cancer drug resistance: New insights from the perspective of N
    Li B; Jiang J; Assaraf YG; Xiao H; Chen ZS; Huang C
    Drug Resist Updat; 2020 Dec; 53():100720. PubMed ID: 32892147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of autophagy fires up the cold tumor microenvironment to improve cancer immunotherapy.
    Jin Z; Sun X; Wang Y; Zhou C; Yang H; Zhou S
    Front Immunol; 2022; 13():1018903. PubMed ID: 36300110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autophagy in Tumor Immunity and Viral-Based Immunotherapeutic Approaches in Cancer.
    Zahedi-Amiri A; Malone K; Beug ST; Alain T; Yeganeh B
    Cells; 2021 Oct; 10(10):. PubMed ID: 34685652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent progress of autophagy signaling in tumor microenvironment and its targeting for possible cancer therapeutics.
    Mukhopadhyay S; Mahapatra KK; Praharaj PP; Patil S; Bhutia SK
    Semin Cancer Biol; 2022 Oct; 85():196-208. PubMed ID: 34500075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autophagy: shaping the tumor microenvironment and therapeutic response.
    Maes H; Rubio N; Garg AD; Agostinis P
    Trends Mol Med; 2013 Jul; 19(7):428-46. PubMed ID: 23714574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cutting-Edge HEK293T Protein-Integrated Lipid Nanostructures: Boosting Biocompatibility and Efficacy.
    Park JH; Bai CZ; Kwak JH; Choi HJ; Lee D; Hong HE; Kim OH; Kim SJ
    Int J Mol Sci; 2024 Mar; 25(6):. PubMed ID: 38542268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing Cancer Chemo-Immunotherapy: Innovative Approaches for Overcoming Immunosuppression by Functional Nanomaterials.
    Wang J; Li L; Xu ZP
    Small Methods; 2024 Jan; 8(1):e2301005. PubMed ID: 37743260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The emerging role of miRNA in the perturbation of tumor immune microenvironment in chemoresistance: Therapeutic implications.
    Mondal P; Kaur B; Natesh J; Meeran SM
    Semin Cell Dev Biol; 2022 Apr; 124():99-113. PubMed ID: 33865701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining Nanomedicine and Immunotherapy.
    Shi Y; Lammers T
    Acc Chem Res; 2019 Jun; 52(6):1543-1554. PubMed ID: 31120725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.