These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38142974)

  • 1. Impact of strict isolation measures, surgical activity and antimicrobial use on Clostridioides difficile infection during COVID-19.
    Ena J; Martinez-Peinado C; Valls V
    Rev Clin Esp (Barc); 2024 Jan; 224(1):65-66. PubMed ID: 38142974
    [No Abstract]   [Full Text] [Related]  

  • 2. Sustained reductions in unnecessary antimicrobial administration and hospital
    Gaffin N; Spellberg B
    Infect Control Hosp Epidemiol; 2023 Mar; 44(3):491-493. PubMed ID: 34915961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Did Clostridioides difficile testing and infection rates change during the COVID-19 pandemic?
    Hawes AM; Desai A; Patel PK
    Anaerobe; 2021 Aug; 70():102384. PubMed ID: 34029702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Healthcare-associated
    Manea E; Jipa R; Milea A; Roman A; Neagu G; Hristea A
    Rom J Intern Med; 2021 Dec; 59(4):409-415. PubMed ID: 34053203
    [No Abstract]   [Full Text] [Related]  

  • 5. Clostridioides (Clostridium) difficile in adults with diarrhoea in Vietnam.
    Khun PA; Phi LD; Bui HTT; Collins DA; Riley TV
    Anaerobe; 2023 Jun; 81():102741. PubMed ID: 37244476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clostridioides difficile infection in the COVID-19 era: old and new problems.
    Spigaglia P
    Pol Arch Intern Med; 2021 Feb; 131(2):118-120. PubMed ID: 33641318
    [No Abstract]   [Full Text] [Related]  

  • 7. Lack of correlation between standardized antimicrobial administration ratios (SAARs) and healthcare-facility-onset
    Evans ME; Jones MM; Davis KW; Lane MT; Simbartl LA; McCauley BP; Gauldin N; Roselle GA
    Infect Control Hosp Epidemiol; 2023 Jun; 44(6):945-947. PubMed ID: 36451287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A narrative review of Clostridioides difficile infection in China.
    Wu Y; Wang YY; Bai LL; Zhang WZ; Li GW; Lu JX
    Anaerobe; 2022 Apr; 74():102540. PubMed ID: 35219837
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Maslennikov R; Ivashkin V; Ufimtseva A; Poluektova E; Ulyanin A
    Future Microbiol; 2022 Jun; 17():653-663. PubMed ID: 35440149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antimicrobial resistance surveillance of Clostridioides difficile in Australia, 2015-18.
    Putsathit P; Hong S; George N; Hemphill C; Huntington PG; Korman TM; Kotsanas D; Lahra M; McDougall R; McGlinchey A; Moore CV; Nimmo GR; Prendergast L; Robson J; Waring L; Wehrhahn MC; Weldhagen GF; Wilson RM; Riley TV; Knight DR
    J Antimicrob Chemother; 2021 Jun; 76(7):1815-1821. PubMed ID: 33895826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spore-Forming
    Chisholm JM; Putsathit P; Riley TV; Lim SC
    Microbiol Spectr; 2023 Feb; 11(1):e0358222. PubMed ID: 36475924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ridinilazole: a novel, narrow-spectrum antimicrobial agent targeting Clostridium (Clostridioides) difficile.
    Collins DA; Riley TV
    Lett Appl Microbiol; 2022 Sep; 75(3):526-536. PubMed ID: 35119124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms and impact of antimicrobial resistance in Clostridioides difficile.
    Dureja C; Olaitan AO; Hurdle JG
    Curr Opin Microbiol; 2022 Apr; 66():63-72. PubMed ID: 35077947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of COVID-19 pandemic on prevalence of Clostridioides difficile infection in a UK tertiary centre.
    Voona S; Abdic H; Montgomery R; Clarkson A; Twitchell H; Hills T; Briggs S; Crooks C; Monaghan TM
    Anaerobe; 2022 Feb; 73():102479. PubMed ID: 34801705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The interplay of SARS-CoV-2 and
    Khanna S; Kraft CS
    Future Microbiol; 2021 Apr; 16():439-443. PubMed ID: 33847139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clostridioides difficile in COVID-19 Patients, Detroit, Michigan, USA, March-April 2020.
    Sandhu A; Tillotson G; Polistico J; Salimnia H; Cranis M; Moshos J; Cullen L; Jabbo L; Diebel L; Chopra T
    Emerg Infect Dis; 2020 Sep; 26(9):2272-4. PubMed ID: 32441243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dogs as carriers of virulent and resistant genotypes of Clostridioides difficile.
    Finsterwalder SK; Loncaric I; Cabal A; Szostak MP; Barf LM; Marz M; Allerberger F; Burgener IA; Tichy A; Feßler AT; Schwarz S; Monecke S; Ehricht R; Ruppitsch W; Spergser J; Künzel F
    Zoonoses Public Health; 2022 Sep; 69(6):673-681. PubMed ID: 35546073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hospital-onset
    Luo Y; Grinspan LT; Fu Y; Adams-Sommer V; Willey DK; Patel G; Grinspan AM
    Infect Control Hosp Epidemiol; 2021 Sep; 42(9):1165-1166. PubMed ID: 32962772
    [No Abstract]   [Full Text] [Related]  

  • 19. Association of Duration and Type of Surgical Prophylaxis With Antimicrobial-Associated Adverse Events.
    Branch-Elliman W; O'Brien W; Strymish J; Itani K; Wyatt C; Gupta K
    JAMA Surg; 2019 Jul; 154(7):590-598. PubMed ID: 31017647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substantial reduction of healthcare facility-onset Clostridioides difficile infection (HO-CDI) rates after conversion of a hospital for exclusive treatment of COVID-19 patients.
    Ochoa-Hein E; Rajme-López S; Rodríguez-Aldama JC; Huertas-Jiménez MA; Chávez-Ríos AR; de Paz-García R; Haro-Osnaya A; González-Colín KK; González-González R; González-Lara MF; Ponce-de-León A; Galindo-Fraga A
    Am J Infect Control; 2021 Jul; 49(7):966-968. PubMed ID: 33352250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.