These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38143285)

  • 1. Recent Advances in Hybrid Seawater Electrolysis for Hydrogen Production.
    Yu Z; Liu L
    Adv Mater; 2024 Mar; 36(13):e2308647. PubMed ID: 38143285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy-saving hydrogen production by seawater electrolysis coupling tip-enhanced electric field promoted electrocatalytic sulfion oxidation.
    Li T; Wang B; Cao Y; Liu Z; Wang S; Zhang Q; Sun J; Zhou G
    Nat Commun; 2024 Jul; 15(1):6173. PubMed ID: 39039041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Developments in Membrane-Free Hybrid Water Electrolysis for Low-Cost Hydrogen Production Along with Value-Added Products.
    Vadivel N; Murthy AP
    Small; 2024 Oct; ():e2407845. PubMed ID: 39431317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seawater electrolysis for fuels and chemicals production: fundamentals, achievements, and perspectives.
    Chen L; Yu C; Dong J; Han Y; Huang H; Li W; Zhang Y; Tan X; Qiu J
    Chem Soc Rev; 2024 Jul; 53(14):7455-7488. PubMed ID: 38855878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy-Saving Hydrogen Production by Seawater Electrolysis Coupling Sulfion Degradation.
    Zhang L; Wang Z; Qiu J
    Adv Mater; 2022 Apr; 34(16):e2109321. PubMed ID: 35150022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pt
    Xu K; Liang L; Li T; Bao M; Yu Z; Wang J; Thalluri SM; Lin F; Liu Q; Cui Z; Song S; Liu L
    Adv Mater; 2024 Aug; 36(31):e2403792. PubMed ID: 38742953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Recent Progresses of Electrodes and Electrolysers for Seawater Electrolysis.
    Zhang F; Zhou J; Chen X; Zhao S; Zhao Y; Tang Y; Tian Z; Yang Q; Slavcheva E; Lin Y; Zhang Q
    Nanomaterials (Basel); 2024 Jan; 14(3):. PubMed ID: 38334510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Materials Design and System Innovation for Direct and Indirect Seawater Electrolysis.
    He W; Li X; Tang C; Zhou S; Lu X; Li W; Li X; Zeng X; Dong P; Zhang Y; Zhang Q
    ACS Nano; 2023 Nov; 17(22):22227-22239. PubMed ID: 37965727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advanced membrane-based electrode engineering toward efficient and durable water electrolysis and cost-effective seawater electrolysis in membrane electrolyzers.
    Tang J; Su C; Shao Z
    Exploration (Beijing); 2024 Feb; 4(1):20220112. PubMed ID: 38854490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aerophobic/Hydrophilic Nickel-Iron Sulfide Nanoarrays for Energy-Saving Hydrogen Production from Seawater Splitting Assisted by Sulfion Oxidation Reaction.
    Zhang J; Zeng Y; Xiao T; Tian S; Jiang J
    Inorg Chem; 2024 Sep; 63(38):17662-17671. PubMed ID: 39240171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy-saving hydrogen production by chlorine-free hybrid seawater splitting coupling hydrazine degradation.
    Sun F; Qin J; Wang Z; Yu M; Wu X; Sun X; Qiu J
    Nat Commun; 2021 Jul; 12(1):4182. PubMed ID: 34234135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selectivity of Oxygen Evolution Reaction on Carbon Cloth-Supported δ-MnO
    Yan H; Wang X; Linkov V; Ji S; Wang R
    Molecules; 2023 Jan; 28(2):. PubMed ID: 36677912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox-mediated decoupled seawater direct splitting for H
    Liu T; Lan C; Tang M; Li M; Xu Y; Yang H; Deng Q; Jiang W; Zhao Z; Wu Y; Xie H
    Nat Commun; 2024 Oct; 15(1):8874. PubMed ID: 39402055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Boosting hydrogen generation by anodic oxidation of iodide over Ni-Co(OH)
    Hu E; Yao Y; Chen Y; Cui Y; Wang Z; Qian G
    Nanoscale Adv; 2021 Jan; 3(2):604-610. PubMed ID: 36131743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Challenges for Hybrid Water Electrolysis to Replace the Oxygen Evolution Reaction on an Industrial Scale.
    Kahlstorf T; Hausmann JN; Sontheimer T; Menezes PW
    Glob Chall; 2023 Jul; 7(7):2200242. PubMed ID: 37483419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupling Value-Added Anodic Reactions with Electrocatalytic CO
    Xu Z; Peng C; Zheng G
    Chemistry; 2023 Feb; 29(11):e202203147. PubMed ID: 36380419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy-Efficient Electrosynthesis of High Value-Added Active Chlorine Coupled with H
    Zhu W; Wei Z; Ma Y; Ren M; Fu X; Li M; Zhang C; Wang J; Guo S
    Angew Chem Int Ed Engl; 2024 Apr; 63(15):e202319798. PubMed ID: 38353370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mott-Schottky heterojunction of Se/NiSe
    Khatun S; Roy P
    J Colloid Interface Sci; 2023 Jan; 630(Pt B):844-854. PubMed ID: 36356450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term Durability of Seawater Electrolysis for Hydrogen: From Catalysts to Systems.
    Liu Y; Wang Y; Fornasiero P; Tian G; Strasser P; Yang XY
    Angew Chem Int Ed Engl; 2024 Aug; ():e202412087. PubMed ID: 39205621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrating hydrogen utilization in CO
    Jiang X; Ke L; Zhao K; Yan X; Wang H; Cao X; Liu Y; Li L; Sun Y; Wang Z; Dang D; Yan N
    Nat Commun; 2024 Feb; 15(1):1427. PubMed ID: 38365776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.