These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 38143305)
1. Induction of apoptosis in B16-BL6 melanoma cells following exposure to electromagnetic fields modeled after intercellular calcium waves. Rain BD; Plourde-Kelly AD; Lafrenie RM; Dotta BT FEBS Open Bio; 2024 Mar; 14(3):515-524. PubMed ID: 38143305 [TBL] [Abstract][Full Text] [Related]
2. Inhibition of cancer cell growth by exposure to a specific time-varying electromagnetic field involves T-type calcium channels. Buckner CA; Buckner AL; Koren SA; Persinger MA; Lafrenie RM PLoS One; 2015; 10(4):e0124136. PubMed ID: 25875081 [TBL] [Abstract][Full Text] [Related]
3. The effects of electromagnetic fields on B16-BL6 cells are dependent on their spatial and temporal character. Buckner CA; Buckner AL; Koren SA; Persinger MA; Lafrenie RM Bioelectromagnetics; 2017 Apr; 38(3):165-174. PubMed ID: 28026051 [TBL] [Abstract][Full Text] [Related]
4. Exposure to a specific time-varying electromagnetic field inhibits cell proliferation via cAMP and ERK signaling in cancer cells. Buckner CA; Buckner AL; Koren SA; Persinger MA; Lafrenie RM Bioelectromagnetics; 2018 Apr; 39(3):217-230. PubMed ID: 29125193 [TBL] [Abstract][Full Text] [Related]
5. Inhibition of B16F10 Cancer Cell Growth by Exposure to the Square Wave with 7.83+/-0.3Hz Involves L- and T-Type Calcium Channels. Wang MH; Jian MW; Tai YH; Jang LS; Chen CH Electromagn Biol Med; 2021 Jan; 40(1):150-157. PubMed ID: 33111597 [TBL] [Abstract][Full Text] [Related]
6. The Protective Effects of EMF-LTE against DNA Double-Strand Break Damage In Vitro and In Vivo. Jin H; Kim K; Park GY; Kim M; Lee HJ; Jeon S; Kim JH; Kim HR; Lim KM; Lee YS Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34066270 [TBL] [Abstract][Full Text] [Related]
7. Electromagnetic fields act via activation of voltage-gated calcium channels to produce beneficial or adverse effects. Pall ML J Cell Mol Med; 2013 Aug; 17(8):958-65. PubMed ID: 23802593 [TBL] [Abstract][Full Text] [Related]
8. Effect of extremely low frequency electromagnetic field parameters on the proliferation of human breast cancer. Wang MH; Chen KW; Ni DX; Fang HJ; Jang LS; Chen CH Electromagn Biol Med; 2021 Jul; 40(3):384-392. PubMed ID: 33632057 [TBL] [Abstract][Full Text] [Related]
9. Exposure to extremely low frequency electromagnetic fields alters the calcium dynamics of cultured entorhinal cortex neurons. Luo FL; Yang N; He C; Li HL; Li C; Chen F; Xiong JX; Hu ZA; Zhang J Environ Res; 2014 Nov; 135():236-46. PubMed ID: 25462671 [TBL] [Abstract][Full Text] [Related]
11. Assessment of the neurotoxic potential of exposure to 50Hz extremely low frequency electromagnetic fields (ELF-EMF) in naïve and chemically stressed PC12 cells. de Groot MW; Kock MD; Westerink RH Neurotoxicology; 2014 Sep; 44():358-64. PubMed ID: 25111744 [TBL] [Abstract][Full Text] [Related]
12. Comparison of the genotoxic effects induced by 50 Hz extremely low-frequency electromagnetic fields and 1800 MHz radiofrequency electromagnetic fields in GC-2 cells. Duan W; Liu C; Zhang L; He M; Xu S; Chen C; Pi H; Gao P; Zhang Y; Zhong M; Yu Z; Zhou Z Radiat Res; 2015 Mar; 183(3):305-14. PubMed ID: 25688995 [TBL] [Abstract][Full Text] [Related]
13. Exposure to extremely low-frequency electromagnetic fields inhibits T-type calcium channels via AA/LTE4 signaling pathway. Cui Y; Liu X; Yang T; Mei YA; Hu C Cell Calcium; 2014 Jan; 55(1):48-58. PubMed ID: 24360572 [TBL] [Abstract][Full Text] [Related]
14. Calcium signalling in human neutrophil cell lines is not affected by low-frequency electromagnetic fields. Golbach LA; Philippi JG; Cuppen JJ; Savelkoul HF; Verburg-van Kemenade BM Bioelectromagnetics; 2015 Sep; 36(6):430-43. PubMed ID: 26073662 [TBL] [Abstract][Full Text] [Related]
16. Cellular stress response to extremely low-frequency electromagnetic fields (ELF-EMF): An explanation for controversial effects of ELF-EMF on apoptosis. Barati M; Darvishi B; Javidi MA; Mohammadian A; Shariatpanahi SP; Eisavand MR; Madjid Ansari A Cell Prolif; 2021 Dec; 54(12):e13154. PubMed ID: 34741480 [TBL] [Abstract][Full Text] [Related]
17. Non-conductive and miniature fiber-optic imaging system for real-time detection of neuronal activity in time-varying electromagnetic fields. Saito A; Takahashi M; Jimbo Y; Nakasono S Biosens Bioelectron; 2017 Jan; 87():786-793. PubMed ID: 27649336 [TBL] [Abstract][Full Text] [Related]
18. Synergistic effect of electromagnetic fields and nanomagnetic particles on osteogenesis through calcium channels and p-ERK signaling. Kim YM; Lim HM; Lee EC; Ki GE; Seo YK J Orthop Res; 2021 Aug; 39(8):1633-1646. PubMed ID: 33150984 [TBL] [Abstract][Full Text] [Related]
19. Melatonin protects rat cerebellar granule cells against electromagnetic field-induced increases in Na(+) currents through intracellular Ca(2+) release. Liu DD; Ren Z; Yang G; Zhao QR; Mei YA J Cell Mol Med; 2014 Jun; 18(6):1060-70. PubMed ID: 24548607 [TBL] [Abstract][Full Text] [Related]
20. Extremely low-frequency electromagnetic fields induce neural differentiation in bone marrow derived mesenchymal stem cells. Kim HJ; Jung J; Park JH; Kim JH; Ko KN; Kim CW Exp Biol Med (Maywood); 2013 Aug; 238(8):923-31. PubMed ID: 23970408 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]