These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 38143572)

  • 1. Biocontrol potential of
    Ajijah N; Fiodor A; Dziurzynski M; Stasiuk R; Pawlowska J; Dziewit L; Pranaw K
    Front Plant Sci; 2023; 14():1288408. PubMed ID: 38143572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyoluteorin and 2,4-diacetylphloroglucinol are major contributors to
    Balthazar C; St-Onge R; Léger G; Lamarre SG; Joly DL; Filion M
    Front Microbiol; 2022; 13():945498. PubMed ID: 36016777
    [No Abstract]   [Full Text] [Related]  

  • 3. Inhibitory effect and possible mechanism of a Pseudomonas strain QBA5 against gray mold on tomato leaves and fruits caused by Botrytis cinerea.
    Gao P; Qin J; Li D; Zhou S
    PLoS One; 2018; 13(1):e0190932. PubMed ID: 29320571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bio-perfume guns: Antifungal volatile activity of Bacillus sp. LNXM12 against postharvest pathogen Botrytis cinerea in tomato and strawberry.
    Khan AR; Ali Q; Ayaz M; Bilal MS; Tariq H; El-Komy MH; Gu Q; Wu H; Vater J; Gao X
    Pestic Biochem Physiol; 2024 Aug; 203():105995. PubMed ID: 39084769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition activity of tomato endophyte Bacillus velezensis FQ-G3 against postharvest Botrytis cinerea.
    Feng B; Li P; Chen D; Ding C
    Folia Microbiol (Praha); 2024 Apr; 69(2):361-371. PubMed ID: 37436591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of a new Bacillus velezensis as a powerful biocontrol agent against tomato gray mold.
    Li S; Xiao Q; Yang H; Huang J; Li Y
    Pestic Biochem Physiol; 2022 Oct; 187():105199. PubMed ID: 36127070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined Use of
    Li TT; Zhang JD; Tang JQ; Liu ZC; Li YQ; Chen J; Zou LW
    Plant Dis; 2020 May; 104(5):1298-1304. PubMed ID: 32196417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibitory effects and mechanisms of vanillin on gray mold and black rot of cherry tomatoes.
    Yang J; Chen YZ; Yu-Xuan W; Tao L; Zhang YD; Wang SR; Zhang GC; Zhang J
    Pestic Biochem Physiol; 2021 Jun; 175():104859. PubMed ID: 33993955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential value of small-molecule organic acids for the control of postharvest gray mold caused by Botrytis cinerea.
    Wang Y; Qiao Y; Zhang M; Ma Z; Xue Y; Mi Q; Wang A; Feng J
    Pestic Biochem Physiol; 2021 Aug; 177():104884. PubMed ID: 34301352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of linalool on
    Wang QF; Wang XY; Li HS; Yang XY; Zhang RM; Gong B; Li XM; Shi QH
    Ying Yong Sheng Tai Xue Bao; 2023 Jan; 34(1):213-220. PubMed ID: 36799396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biological Control of Tomato Gray Mold Caused by
    Sarven MS; Hao Q; Deng J; Yang F; Wang G; Xiao Y; Xiao X
    Pathogens; 2020 Mar; 9(3):. PubMed ID: 32183055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of Volatile Organic Compounds Produced by
    Wang C; Duan T; Shi L; Zhang X; Fan W; Wang M; Wang J; Ren L; Zhao X; Wang Y
    Plant Dis; 2022 Sep; 106(9):2321-2329. PubMed ID: 35380464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of Plant Extracts to Control Postharvest Gray Mold and Susceptibility of Apple Fruits to
    Šernaitė L; Rasiukevičiūtė N; Valiuškaitė A
    Foods; 2020 Oct; 9(10):. PubMed ID: 33050259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and evaluation of an endophytic antagonistic yeast for the control of gray mold (Botrytis cinerea) in apple and mechanisms of action.
    Yu X; Zhang K; Liu J; Zhao Z; Guo B; Wang X; Xiang W; Zhao J
    Food Microbiol; 2024 Oct; 123():104583. PubMed ID: 39038889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into the Biocontrol Function of a Burkholderia gladioli Strain against Botrytis cinerea.
    Wang D; Luo WZ; Zhang DD; Li R; Kong ZQ; Song J; Dai XF; Alkan N; Chen JY
    Microbiol Spectr; 2023 Mar; 11(2):e0480522. PubMed ID: 36861984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the Mechanism of Action of
    Alijani Z; Amini J; Karimi K; Pertot I
    Plants (Basel); 2022 Dec; 12(1):. PubMed ID: 36616283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Biocontrol Strain of
    Wang X; Zhou X; Cai Z; Guo L; Chen X; Chen X; Liu J; Feng M; Qiu Y; Zhang Y; Wang A
    Pathogens; 2020 Dec; 10(1):. PubMed ID: 33396336
    [No Abstract]   [Full Text] [Related]  

  • 18. Beneficial Bacteria Identified for the Control of
    South KA; Peduto Hand F; Jones ML
    Plant Dis; 2020 Jun; 104(6):1801-1810. PubMed ID: 32289248
    [No Abstract]   [Full Text] [Related]  

  • 19. Biocontrol Activity of
    Balthazar C; Novinscak A; Cantin G; Joly DL; Filion M
    Phytopathology; 2022 Mar; 112(3):549-560. PubMed ID: 34293909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endophytic bacteria from strawberry plants control gray mold in fruits via production of antifungal compounds against Botrytis cinerea L.
    Moura GGD; Barros AV; Machado F; Martins AD; Silva CMD; Durango LGC; Forim M; Alves E; Pasqual M; Doria J
    Microbiol Res; 2021 Oct; 251():126793. PubMed ID: 34325193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.