These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 38144089)
1. Investigations of Water Transport in Shale Reservoir with Dual-Wettability by Using Monte Carlo Method. Liang T; Fan W; Yu B; Yang C; Qu M ACS Omega; 2023 Dec; 8(50):48280-48291. PubMed ID: 38144089 [TBL] [Abstract][Full Text] [Related]
2. A Coupled Model for Upscaling Water Flow in a Shale Matrix System from Pore Scale to Representative Elementary Area Scale. Yang Y; Long W; Yang J; Liu T ACS Omega; 2024 Feb; 9(5):5215-5223. PubMed ID: 38343964 [TBL] [Abstract][Full Text] [Related]
3. Transport Behavior of Oil in Mixed Wettability Shale Nanopores. Zhao G; Yao Y; Adenutsi CD; Feng X; Wang L; Wu W ACS Omega; 2020 Dec; 5(49):31831-31844. PubMed ID: 33344837 [TBL] [Abstract][Full Text] [Related]
4. Fractal characteristics of shale pore structure and its influence on seepage flow. Wang S; Li X; Xue H; Shen Z; Chen L R Soc Open Sci; 2021 May; 8(5):202271. PubMed ID: 34017601 [TBL] [Abstract][Full Text] [Related]
5. Study on the Influence of Shale Storage Space Types on Shale Gas Transport. Gao Q; Dong P; Liu C ACS Omega; 2021 May; 6(20):12931-12951. PubMed ID: 34056445 [TBL] [Abstract][Full Text] [Related]
6. On wettability of shale rocks. Roshan H; Al-Yaseri AZ; Sarmadivaleh M; Iglauer S J Colloid Interface Sci; 2016 Aug; 475():104-111. PubMed ID: 27156090 [TBL] [Abstract][Full Text] [Related]
7. Study on the Effects of Wettability and Pressure in Shale Matrix Nanopore Imbibition during Shut-in Process by Molecular Dynamics Simulations. Jiang W; Lv W; Jia N; Lu X; Wang L; Wang K; Mei Y Molecules; 2024 Mar; 29(5):. PubMed ID: 38474624 [TBL] [Abstract][Full Text] [Related]
8. Multiscale modeling of gas flow behaviors in nanoporous shale matrix considering multiple transport mechanisms. Zhou W; Yang X; Liu X Phys Rev E; 2022 May; 105(5-2):055308. PubMed ID: 35706209 [TBL] [Abstract][Full Text] [Related]
9. Experimental Study of the Wettability Characteristic of Thermally Treated Shale. Yang J; Gu C; Chen W; Yuan Y; Wang T; Sun J ACS Omega; 2020 Oct; 5(40):25891-25898. PubMed ID: 33073114 [TBL] [Abstract][Full Text] [Related]
10. Impact of mineralogy and wettability on pore-scale displacement of NAPLs in heterogeneous porous media. Arshadi M; Gesho M; Qin T; Goual L; Piri M J Contam Hydrol; 2020 Mar; 230():103599. PubMed ID: 31932069 [TBL] [Abstract][Full Text] [Related]
11. Pore-Scale Simulation and Sensitivity Analysis of Apparent Gas Permeability in Shale Matrix. Zhang P; Hu L; Meegoda JN Materials (Basel); 2017 Jan; 10(2):. PubMed ID: 28772465 [TBL] [Abstract][Full Text] [Related]
12. Molecular Dynamics Simulations of Oil-Water Wetting Models of Organic Matter and Minerals in Shale at the Nanometer Scale. Dong Z; Xue H; Li B; Tian S; Lu S; Lu S J Nanosci Nanotechnol; 2021 Jan; 21(1):85-97. PubMed ID: 33213615 [TBL] [Abstract][Full Text] [Related]
13. Confinement Correction to Mercury Intrusion Capillary Pressure of Shale Nanopores. Wang S; Javadpour F; Feng Q Sci Rep; 2016 Feb; 6():20160. PubMed ID: 26832445 [TBL] [Abstract][Full Text] [Related]
14. Study on the Nanopore Deformation Mechanisms in Shale Oil Reservoir: Insights from the Molecular Simulation. Lei Z; Dou X; Hong S; He Y; Dai J; Zhao X ACS Omega; 2023 Dec; 8(49):46989-47000. PubMed ID: 38107918 [TBL] [Abstract][Full Text] [Related]
15. Nanopore Structure and Fractal Characteristics of Lacustrine Shale: Implications for Shale Gas Storage and Production Potential. Chen L; Jiang Z; Jiang S; Liu K; Yang W; Tan J; Gao F Nanomaterials (Basel); 2019 Mar; 9(3):. PubMed ID: 30866444 [TBL] [Abstract][Full Text] [Related]
16. Fractal Characteristics of the Middle-Upper Ordovician Marine Shale Nano-Scale Porous Structure from the Ordos Basin, Northeast China. Liu L; Mo W; Wang M; Zhou N; Yan Y; Xu L; Li M; Zhang J; Lu S J Nanosci Nanotechnol; 2021 Jan; 21(1):274-283. PubMed ID: 33213629 [TBL] [Abstract][Full Text] [Related]
17. Effect of maturity and mineralogy on fluid-rock reactions in the Marcellus Shale. Pilewski J; Sharma S; Agrawal V; Hakala JA; Stuckman MY Environ Sci Process Impacts; 2019 May; 21(5):845-855. PubMed ID: 30840020 [TBL] [Abstract][Full Text] [Related]
18. Variation in Pore Structure and Associated Fractal Dimensions of Barakar and Barren Measures Carbon-Rich Gas Shales of Jharia Basin, India. Khangar RG; Mendhe VA; Kamble AD; Ranjan Das P; Shukla P; Bannerjee M; Varma AK ACS Omega; 2021 Nov; 6(43):28678-28698. PubMed ID: 34746563 [TBL] [Abstract][Full Text] [Related]
19. A Heterogeneous Viscosity Flow Model for Liquid Transport through Nanopores Considering Pore Size and Wettability. Chang Y; Zhang Y; Niu Z; Chen X; Du M; Yang Z Molecules; 2024 Jul; 29(13):. PubMed ID: 38999127 [TBL] [Abstract][Full Text] [Related]
20. Impact of de-ionized water on changes in porosity and permeability of shales mineralogy due to clay-swelling. Zhang D; Meegoda JN; da Silva BMG; Hu L Sci Rep; 2021 Oct; 11(1):20049. PubMed ID: 34625625 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]