These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 38144089)
41. Pore-Scale Geochemical Reactivity Associated with CO Noiriel C; Daval D Acc Chem Res; 2017 Apr; 50(4):759-768. PubMed ID: 28362082 [TBL] [Abstract][Full Text] [Related]
42. Hydraulic fracturing: New uncertainty based modeling approach for process design using Monte Carlo simulation technique. Quosay AA; Knez D; Ziaja J PLoS One; 2020; 15(7):e0236726. PubMed ID: 32726370 [TBL] [Abstract][Full Text] [Related]
43. Configurational diffusion transport of water and oil in dual continuum shales. Siddiqui MAQ; Salvemini F; Ramandi HL; Fitzgerald P; Roshan H Sci Rep; 2021 Jan; 11(1):2152. PubMed ID: 33495533 [TBL] [Abstract][Full Text] [Related]
44. Microscopic Production Characteristics of Pore Crude Oil and Influencing Factors during Enhanced Oil Recovery by Air Injection in Shale Oil Reservoirs. Du M; Yang Z; Feng C; Yao L; Chen X; Li H ACS Omega; 2023 May; 8(20):18186-18201. PubMed ID: 37251129 [TBL] [Abstract][Full Text] [Related]
45. Impact of Overpressure on the Deep Shale Pore System-A Case Study of Wufeng-Longmaxi Formations from the Southern Sichuan Basin. Xu L; Pan R; Hu H; Wang T ACS Omega; 2023 Aug; 8(31):28674-28689. PubMed ID: 37576625 [TBL] [Abstract][Full Text] [Related]
46. Study and Classification of Porosity Stress Sensitivity in Shale Gas Reservoirs Based on Experiments and Optimized Support Vector Machine Algorithm for the Silurian Longmaxi Shale in the Southern Sichuan Basin, China. Liang Z; Jiang Z; Wu W; Guo J; Wang M; Nie Z; Li Z; Xu D; Xue Z; Chen R; Han Y ACS Omega; 2022 Sep; 7(37):33167-33185. PubMed ID: 36157731 [TBL] [Abstract][Full Text] [Related]
47. An Apparent Permeability Model in Organic Shales: Coupling Multiple Flow Mechanisms and Factors. Song H; Li B; Li J; Ye P; Duan S; Ding Y Langmuir; 2023 Mar; 39(11):3951-3966. PubMed ID: 36877867 [TBL] [Abstract][Full Text] [Related]
48. Synergistic Effects of Micronano Structures on Porosity and the Permeability of Shale Under Varying Effective Stresses and Temperatures: A Case Study of Fresh Outcrops from Lower Silurian Longmaxi Formation Shale in the Southern Sichuan Basin, China. Yue X; Li Y; Bi E; Chen H J Nanosci Nanotechnol; 2021 Jan; 21(1):120-138. PubMed ID: 33213618 [TBL] [Abstract][Full Text] [Related]
49. An anisotropic pore-network model to estimate the shale gas permeability. Zhang D; Zhang X; Guo H; Lin D; Meegoda JN; Hu L Sci Rep; 2021 Apr; 11(1):7902. PubMed ID: 33846392 [TBL] [Abstract][Full Text] [Related]
50. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
51. The effect of N-ethyl-N-hydroxyethyl perfluorooctanoamide on wettability alteration of shale reservoir. Li Y; Wang Y; Wang K; Gomado F; Wang G; Tang L; Rong X Sci Rep; 2018 May; 8(1):6941. PubMed ID: 29720712 [TBL] [Abstract][Full Text] [Related]
52. The Description of Shale Reservoir Pore Structure Based on Method of Moments Estimation. Li W; Wang C; Shi Z; Wei Y; Zhou H; Deng K PLoS One; 2016; 11(3):e0151631. PubMed ID: 26992168 [TBL] [Abstract][Full Text] [Related]
53. Novel Model for Rate Transient Analysis in Stress-Sensitive Shale Gas Reservoirs. Lu T; Long S; Li Z; Liu S; Liu Y; Adenutsi CD; Peng Z ACS Omega; 2021 Jun; 6(22):14015-14029. PubMed ID: 34124426 [TBL] [Abstract][Full Text] [Related]
54. How boundary slip controls emergent Darcy flow of liquids in tortuous and in capillary pores. Singh K Phys Rev E; 2020 Jul; 102(1-1):013101. PubMed ID: 32794951 [TBL] [Abstract][Full Text] [Related]
55. Fabrication and verification of a glass-silicon-glass micro-/nanofluidic model for investigating multi-phase flow in shale-like unconventional dual-porosity tight porous media. Zhang Y; Zhou C; Qu C; Wei M; He X; Bai B Lab Chip; 2019 Dec; 19(24):4071-4082. PubMed ID: 31702750 [TBL] [Abstract][Full Text] [Related]
56. An efficient laboratory method to measure the combined effects of Knudsen diffusion and mechanical deformation on shale permeability. Liu HH; Zhang J J Contam Hydrol; 2020 Jun; 232():103652. PubMed ID: 32408075 [TBL] [Abstract][Full Text] [Related]
57. Lithofacies Types and Physical Characteristics of Organic-Rich Shale in the Wufeng-Longmaxi Formation, Xichang Basin, China. He W; Li T; Mou B; Lei Y; Song J; Liu Z ACS Omega; 2023 May; 8(20):18165-18179. PubMed ID: 37251139 [TBL] [Abstract][Full Text] [Related]
58. Design and development of CaCO Zhong Y; Zhang H; Zhang J Nanotechnology; 2021 Jun; 32(37):. PubMed ID: 34077924 [TBL] [Abstract][Full Text] [Related]
59. Experimental investigation on the high-pressure sand suspension and adsorption capacity of guar gum fracturing fluid in low-permeability shale reservoirs: factor analysis and mechanism disclosure. Li Q; Wang F; Wang Y; Forson K; Cao L; Zhang C; Zhou C; Zhao B; Chen J Environ Sci Pollut Res Int; 2022 Jul; 29(35):53050-53062. PubMed ID: 35279752 [TBL] [Abstract][Full Text] [Related]
60. Formation and Distribution of Different Pore Types in the Lacustrine Calcareous Shale: Insights from XRD, FE-SEM, and Low-Pressure Nitrogen Adsorption Analyses. Khan D; Qiu L; Liang C; Mirza K; Kashif M; Yang B; Kra KL; Wang Y; Li X ACS Omega; 2022 Mar; 7(12):10820-10839. PubMed ID: 35382284 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]