These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38144198)

  • 1. Initial decomposition of floating leaf blades of
    Klok PF; van der Velde G
    PeerJ; 2023; 11():e16689. PubMed ID: 38144198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plant traits and environment: floating leaf blade production and turnover of
    Klok PF; van der Velde G
    PeerJ; 2022; 10():e13976. PubMed ID: 36068866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Initial decomposition of floating leaf blades of waterlilies: causes, damage types and impacts.
    Klok PF; van der Velde G
    PeerJ; 2019; 7():e7158. PubMed ID: 31275754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phenols and phenol oxidases are involved in cadmium accumulation in the water plants Nymphoides peltata (Menyanthaceae) and Nymphaeae (Nymphaeaceae).
    Lavid N; Schwartz A; Lewinsohn E; Tel-Or E
    Planta; 2001 Dec; 214(2):189-95. PubMed ID: 11800382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plant traits and environment: floating leaf blade production and turnover of waterlilies.
    Klok PF; van der Velde G
    PeerJ; 2017; 5():e3212. PubMed ID: 28462025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioaccumulation, subcellular, and molecular localization and damage to physiology and ultrastructure in Nymphoides peltata (Gmel.) O. Kuntze exposed to yttrium.
    Fu Y; Li F; Xu T; Cai S; Chu W; Qiu H; Sha S; Cheng G; Xu Q
    Environ Sci Pollut Res Int; 2014 Feb; 21(4):2935-42. PubMed ID: 24170501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The complete chloroplast genome sequence of
    Zhou X; Lv Y; Zhang J; Wang D; Wang Z; Zhou Y; Wang W
    Mitochondrial DNA B Resour; 2022; 7(7):1406-1407. PubMed ID: 35923642
    [No Abstract]   [Full Text] [Related]  

  • 8. Flood tolerance of Glyceria fluitans: the importance of cuticle hydrophobicity, permeability and leaf gas films for underwater gas exchange.
    Konnerup D; Pedersen O
    Ann Bot; 2017 Oct; 120(4):521-528. PubMed ID: 29059317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pythiaceous fungi associated with the decomposition of Nymphoides peltata.
    Jacobs RP
    Antonie Van Leeuwenhoek; 1982 Dec; 48(5):433-45. PubMed ID: 7165298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fungi on leaf blades of Phragmites australis in a brackish tidal marsh: diversity, succession, and leaf decomposition.
    Van Ryckegem G; Gessner MO; Verbeken A
    Microb Ecol; 2007 May; 53(4):600-11. PubMed ID: 17334859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Seed bank characteristics of the Nymphoides peltata population in Lake Taihu.
    Huang W; Chen Q; Chen K
    Sci Rep; 2015 Aug; 5():13261. PubMed ID: 26281712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling Nymphoides architecture: A morphological analysis of Nymphoides aquatica (Menyanthaceae).
    Richards JH; Dow M; Troxler T
    Am J Bot; 2010 Nov; 97(11):1761-71. PubMed ID: 21616815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptome profiling of the floating-leaved aquatic plant Nymphoides peltata in response to flooding stress.
    Wu J; Zhao HB; Yu D; Xu X
    BMC Genomics; 2017 Jan; 18(1):119. PubMed ID: 28143394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reproductive consequences of interactions between clonal growth and sexual reproduction in Nymphoides peltata: a distylous aquatic plant.
    Wang Y; Wang QF; Guo YH; Barrett SC
    New Phytol; 2005 Jan; 165(1):329-35. PubMed ID: 15720644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pond-bottom decomposition of leaf litters canopied by free-floating vegetation.
    Zhang YL; Li HB; Xu L; Pan X; Li WB; Liu J; Jiang YP; Song YB; Dong M
    Environ Sci Pollut Res Int; 2019 Mar; 26(8):8248-8256. PubMed ID: 30701469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions between bacteria and fungi in macrophyte leaf litter decomposition.
    Zhao B; Xing P; Wu QL
    Environ Microbiol; 2021 Feb; 23(2):1130-1144. PubMed ID: 33015932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of microbes and denitrifiers attached to two species of floating plants in the wetlands of Lake Taihu.
    Han B; Zhang S; Zhang L; Liu K; Yan L; Wang P; Wang C; Pang S
    PLoS One; 2018; 13(11):e0207443. PubMed ID: 30422988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fungal growth, production, and sporulation during leaf decomposition in two streams.
    Suberkropp K
    Appl Environ Microbiol; 2001 Nov; 67(11):5063-8. PubMed ID: 11679327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbes participated in macrophyte leaf litters decomposition in freshwater habitat.
    Zhao B; Xing P; Wu QL
    FEMS Microbiol Ecol; 2017 Oct; 93(10):. PubMed ID: 28961908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined effects of water temperature, grazing snails and terrestrial herbivores on leaf decomposition in urban streams.
    Xiang H; Zhang Y; Atkinson D; Sekar R
    PeerJ; 2019; 7():e7580. PubMed ID: 31608164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.