BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38144228)

  • 41. Chemical and functional homology of myotoxin a from prairie rattlesnake venom and crotamine from South American rattlesnake venom.
    Cameron DL; Tu AT
    Biochim Biophys Acta; 1978 Jan; 532(1):147-54. PubMed ID: 620050
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The best of both worlds? Rattlesnake hybrid zones generate complex combinations of divergent venom phenotypes that retain high toxicity.
    Smith CF; Nikolakis ZL; Perry BW; Schield DR; Meik JM; Saviola AJ; Castoe TA; Parker J; Mackessy SP
    Biochimie; 2023 Oct; 213():176-189. PubMed ID: 37451532
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Montane Rattlesnakes in México: Venoms of
    Grabowsky ER; Saviola AJ; Alvarado-Díaz J; Mascareñas AQ; Hansen KC; Yates JR; Mackessy SP
    Toxins (Basel); 2023 Jan; 15(1):. PubMed ID: 36668891
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Snake venom potency and yield are associated with prey-evolution, predator metabolism and habitat structure.
    Healy K; Carbone C; Jackson AL
    Ecol Lett; 2019 Mar; 22(3):527-537. PubMed ID: 30616302
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Multiple myotoxin sequences from the venom of a single prairie rattlesnake (Crotalus viridis viridis).
    Aird SD; Kruggel WG; Kaiser II
    Toxicon; 1991; 29(2):265-8. PubMed ID: 2048143
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A new small myotoxin from the venom of the prairie rattlesnake (Crotalus viridis viridis).
    Griffin PR; Aird SD
    FEBS Lett; 1990 Nov; 274(1-2):43-7. PubMed ID: 2253781
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Rattlesnakes are extremely fast and variable when striking at kangaroo rats in nature: Three-dimensional high-speed kinematics at night.
    Higham TE; Clark RW; Collins CE; Whitford MD; Freymiller GA
    Sci Rep; 2017 Jan; 7():40412. PubMed ID: 28084400
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Asymmetrical expression of toxins between the left and right venom glands of an individual prairie rattlesnake (Crotalus viridis viridis).
    Smith CF; Mackessy SP
    Toxicon; 2020 Oct; 186():105-108. PubMed ID: 32777251
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ontogeny of striking, prey-handling and envenomation behavior of prairie rattlesnakes (Crotalus v. viridis).
    Hayes WK
    Toxicon; 1991; 29(7):867-75. PubMed ID: 1926185
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Resistance of the prairie vole (Microtus ochrogaster) and the woodrat (Neotoma floridana), in Kansas, to venom of the osage copperhead (Agkistrodon contortrix phaeogaster).
    de Wit CA
    Toxicon; 1982; 20(4):709-14. PubMed ID: 6753240
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ability of antiserum to myotoxin alpha from prairie rattlesnake (Crotalus viridis viridis) venom to neutralize local myotoxicity and lethal effects of myotoxin alpha and homologous crude venom.
    Ownby CL; Odell GV; Woods WM; Colberg TR
    Toxicon; 1983; 21(1):35-45. PubMed ID: 6845385
    [No Abstract]   [Full Text] [Related]  

  • 52. Classification of myonecrosis induced by snake venoms: venoms from the prairie rattlesnake (Crotalus viridis viridis), western diamondback rattlesnake (Crotalus atrox) and the Indian cobra (Naja naja naja).
    Ownby CL; Colberg TR
    Toxicon; 1988; 26(5):459-74. PubMed ID: 3188052
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Full-Length Venom Protein cDNA Sequences from Venom-Derived mRNA: Exploring Compositional Variation and Adaptive Multigene Evolution.
    Modahl CM; Mackessy SP
    PLoS Negl Trop Dis; 2016 Jun; 10(6):e0004587. PubMed ID: 27280639
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Intercontinental test of constraint-breaking adaptations: Testing behavioural plasticity in the face of a predator with novel hunting strategies.
    Bleicher SS; Kotler BP; Downs CJ; Brown JS
    J Anim Ecol; 2020 Aug; 89(8):1837-1850. PubMed ID: 32271948
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The roles of balancing selection and recombination in the evolution of rattlesnake venom.
    Schield DR; Perry BW; Adams RH; Holding ML; Nikolakis ZL; Gopalan SS; Smith CF; Parker JM; Meik JM; DeGiorgio M; Mackessy SP; Castoe TA
    Nat Ecol Evol; 2022 Sep; 6(9):1367-1380. PubMed ID: 35851850
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Kangaroo rats change temperature when investigating rattlesnake predators.
    Schraft HA; Clark RW
    Physiol Behav; 2017 May; 173():174-178. PubMed ID: 28188761
    [TBL] [Abstract][Full Text] [Related]  

  • 57. BoaγPLI from Boa constrictor Blood is a Broad-Spectrum Inhibitor of Venom PLA
    Rodrigues CFB; Zdenek CN; Serino-Silva C; de Morais-Zani K; Grego KF; Bénard-Valle M; Neri-Castro E; Alagón A; Tanaka-Azevedo AM; Fry BG
    J Chem Ecol; 2021 Nov; 47(10-11):907-914. PubMed ID: 34165686
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evidence for divergent patterns of local selection driving venom variation in Mojave Rattlesnakes (Crotalus scutulatus).
    Strickland JL; Smith CF; Mason AJ; Schield DR; Borja M; Castañeda-Gaytán G; Spencer CL; Smith LL; Trápaga A; Bouzid NM; Campillo-García G; Flores-Villela OA; Antonio-Rangel D; Mackessy SP; Castoe TA; Rokyta DR; Parkinson CL
    Sci Rep; 2018 Dec; 8(1):17622. PubMed ID: 30514908
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Diet Breadth Mediates the Prey Specificity of Venom Potency in Snakes.
    Lyons K; Dugon MM; Healy K
    Toxins (Basel); 2020 Jan; 12(2):. PubMed ID: 31979380
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.