These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 38144315)
1. Development of a highly concentrated collagen ink for the creation of a 3D printed meniscus. Ronca A; D'Amora U; Capuana E; Zihlmann C; Stiefel N; Pattappa G; Schewior R; Docheva D; Angele P; Ambrosio L Heliyon; 2023 Dec; 9(12):e23107. PubMed ID: 38144315 [TBL] [Abstract][Full Text] [Related]
2. Suture Fiber Reinforcement of a 3D Printed Gelatin Scaffold for Its Potential Application in Soft Tissue Engineering. Choi DJ; Choi K; Park SJ; Kim YJ; Chung S; Kim CH Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769034 [TBL] [Abstract][Full Text] [Related]
3. Control of maleic acid-propylene diepoxide hydrogel for 3D printing application for flexible tissue engineering scaffold with high resolution by end capping and graft polymerization. Tran HN; Kim IG; Kim JH; Chung EJ; Noh I Biomater Res; 2022 Dec; 26(1):75. PubMed ID: 36494708 [TBL] [Abstract][Full Text] [Related]
4. 3D printing of mechanically functional meniscal tissue equivalents using high concentration extracellular matrix inks. Wang B; Barceló X; Von Euw S; Kelly DJ Mater Today Bio; 2023 Jun; 20():100624. PubMed ID: 37122835 [TBL] [Abstract][Full Text] [Related]
5. Shape fidelity, mechanical and biological performance of 3D printed polycaprolactone-bioactive glass composite scaffolds. Baier RV; Contreras Raggio JI; Giovanetti CM; Palza H; Burda I; Terrasi G; Weisse B; De Freitas GS; Nyström G; Vivanco JF; Aiyangar AK Biomater Adv; 2022 Mar; 134():112540. PubMed ID: 35525740 [TBL] [Abstract][Full Text] [Related]
6. Precision 3D printed meniscus scaffolds to facilitate hMSCs proliferation and chondrogenic differentiation for tissue regeneration. Deng X; Chen X; Geng F; Tang X; Li Z; Zhang J; Wang Y; Wang F; Zheng N; Wang P; Yu X; Hou S; Zhang W J Nanobiotechnology; 2021 Dec; 19(1):400. PubMed ID: 34856996 [TBL] [Abstract][Full Text] [Related]
7. The Design and Characterization of a Strong Bio-Ink for Meniscus Regeneration. Lu J; Huang J; Jin J; Xie C; Xue B; Lai J; Cheng B; Li L; Jiang Q Int J Bioprint; 2022; 8(4):600. PubMed ID: 36483752 [TBL] [Abstract][Full Text] [Related]
8. Coaxial micro-extrusion of a calcium phosphate ink with aqueous solvents improves printing stability, structure fidelity and mechanical properties. Bagnol R; Sprecher C; Peroglio M; Chevalier J; Mahou R; Büchler P; Richards G; Eglin D Acta Biomater; 2021 Apr; 125():322-332. PubMed ID: 33631396 [TBL] [Abstract][Full Text] [Related]
9. Fabrication of 3D Printed poly(lactic acid) strut and wet-electrospun cellulose nano fiber reinforced chitosan-collagen hydrogel composite scaffolds for meniscus tissue engineering. Gunes OC; Kara A; Baysan G; Bugra Husemoglu R; Akokay P; Ziylan Albayrak A; Ergur BU; Havitcioglu H J Biomater Appl; 2022 Oct; 37(4):683-697. PubMed ID: 35722881 [TBL] [Abstract][Full Text] [Related]
10. 3D Printed Chitosan Composite Scaffold for Chondrocytes Differentiation. Sahai N; Gogoi M; Tewari RP Curr Med Imaging; 2021; 17(7):832-842. PubMed ID: 33334294 [TBL] [Abstract][Full Text] [Related]
12. Investigation of Liquid Collagen Ink for Three-Dimensional Printing. Snider CL; Glover CJ; Grant DA; Grant SA Micromachines (Basel); 2024 Apr; 15(4):. PubMed ID: 38675300 [TBL] [Abstract][Full Text] [Related]
13. Meniscus ECM-functionalised hydrogels containing infrapatellar fat pad-derived stem cells for bioprinting of regionally defined meniscal tissue. Romanazzo S; Vedicherla S; Moran C; Kelly DJ J Tissue Eng Regen Med; 2018 Mar; 12(3):e1826-e1835. PubMed ID: 29105354 [TBL] [Abstract][Full Text] [Related]
14. [CYTOCOMPATIBILITY AND PREPARATION OF BONE TISSUE ENGINEERING SCAFFOLD BY COMBINING LOW TEMPERATURE THREE DIMENSIONAL PRINTING AND VACUUM FREEZE-DRYING TECHNIQUES]. Li D; Zhang Z; Zheng C; Zhao B; Sun K; Nian Z; Zhang X; Li R; Li H Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 Mar; 30(3):292-7. PubMed ID: 27281872 [TBL] [Abstract][Full Text] [Related]
15. High resolution and fidelity 3D printing of Laponite and alginate ink hydrogels for tunable biomedical applications. Munoz-Perez E; Perez-Valle A; Igartua M; Santos-Vizcaino E; Hernandez RM Biomater Adv; 2023 Jun; 149():213414. PubMed ID: 37031611 [TBL] [Abstract][Full Text] [Related]
16. Digestion degree is a key factor to regulate the printability of pure tendon decellularized extracellular matrix bio-ink in extrusion-based 3D cell printing. Zhao F; Cheng J; Sun M; Yu H; Wu N; Li Z; Zhang J; Li Q; Yang P; Liu Q; Hu X; Ao Y Biofabrication; 2020 Jul; 12(4):045011. PubMed ID: 32640428 [TBL] [Abstract][Full Text] [Related]
17. Towards resorbable 3D-printed scaffolds for craniofacial bone regeneration. Karanth D; Song K; Martin ML; Meyer DR; Dolce C; Huang Y; Holliday LS Orthod Craniofac Res; 2023 Dec; 26 Suppl 1():188-195. PubMed ID: 36866957 [TBL] [Abstract][Full Text] [Related]
18. [Study on the preparation of polycaprolactone/type Shen S; Chen M; Gao S; Guo W; Wang Z; Li H; Li X; Zhang B; Xian H; Zhang X; Liu S; Hao L; Zhuo N; Guo Q Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Sep; 32(9):1205-1210. PubMed ID: 30129332 [TBL] [Abstract][Full Text] [Related]
19. Hybrid biofabrication of 3D osteoconductive constructs comprising Mg-based nanocomposites and cell-laden bioinks for bone repair. Alcala-Orozco CR; Mutreja I; Cui X; Hooper GJ; Lim KS; Woodfield TBF Bone; 2022 Jan; 154():116198. PubMed ID: 34534709 [TBL] [Abstract][Full Text] [Related]
20. Solvent-based Extrusion 3D Printing for the Fabrication of Tissue Engineering Scaffolds. Zhang B; Cristescu R; Chrisey DB; Narayan RJ Int J Bioprint; 2020; 6(1):211. PubMed ID: 32596549 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]