These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38145167)

  • 1. Fano Resonance-Assisted All-Dielectric Array for Enhanced Near-Field Optical Trapping of Nanoparticles.
    Conteduca D; Khan SN; Martínez Ruiz MA; Bruce GD; Krauss TF; Dholakia K
    ACS Photonics; 2023 Dec; 10(12):4322-4328. PubMed ID: 38145167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fano-Resonant, Asymmetric, Metamaterial-Assisted Tweezers for Single Nanoparticle Trapping.
    Kotsifaki DG; Truong VG; Chormaic SN
    Nano Lett; 2020 May; 20(5):3388-3395. PubMed ID: 32275440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enabling Self-Induced Back-Action Trapping of Gold Nanoparticles in Metamaterial Plasmonic Tweezers.
    Bouloumis TD; Kotsifaki DG; Nic Chormaic S
    Nano Lett; 2023 Jun; 23(11):4723-4731. PubMed ID: 37256850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast and efficient nanoparticle trapping using plasmonic connected nanoring apertures.
    Bouloumis TD; Kotsifaki DG; Han X; Chormaic SN; Truong VG
    Nanotechnology; 2021 Jan; 32(2):025507. PubMed ID: 32992307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures.
    Saleh AA; Dionne JA
    Nano Lett; 2012 Nov; 12(11):5581-6. PubMed ID: 23035765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utilization of plasmonic and photonic crystal nanostructures for enhanced micro- and nanoparticle manipulation.
    Simmons CS; Knouf EC; Tewari M; Lin LY
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21988841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical trapping of nanoparticles.
    Bergeron J; Zehtabi-Oskuie A; Ghaffari S; Pang Y; Gordon R
    J Vis Exp; 2013 Jan; (71):e4424. PubMed ID: 23354173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmofluidic-Based Near-Field Optical Trapping of Dielectric Nano-Objects Using Gold Nanoislands Sensor Chips.
    Qiu G; Du Y; Guo Y; Meng Y; Gai Z; Zhang M; Wang J; deMello A
    ACS Appl Mater Interfaces; 2022 Oct; 14(42):47409-47419. PubMed ID: 36240070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification of high-efficiency trapping of nanoparticles in a double nanohole optical tweezer.
    Kotnala A; Gordon R
    Nano Lett; 2014 Feb; 14(2):853-6. PubMed ID: 24404888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigations on the optical forces from three mainstream optical resonances in all-dielectric nanostructure arrays.
    Wang G; Han Z
    Beilstein J Nanotechnol; 2023; 14():674-682. PubMed ID: 37284552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Circular nanocavity substrate-assisted plasmonic tip for its enhancement in nanofocusing and optical trapping.
    Lu F; Zhang W; Sun L; Mei T; Yuan X
    Opt Express; 2021 Nov; 29(23):37515-37524. PubMed ID: 34808821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced optical trapping of ZrO
    Peng M; Luo H; Xiong W; Kuang T; Chen X; Han X; Xiao G; Tan Z
    Opt Express; 2022 Dec; 30(26):46060-46069. PubMed ID: 36558569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of silicon photonic crystal resonator designs for optical trapping of nanomaterials.
    Serey X; Mandal S; Erickson D
    Nanotechnology; 2010 Jul; 21(30):305202. PubMed ID: 20603537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High Trap Stiffness Microcylinders for Nanophotonic Trapping.
    Badman RP; Ye F; Caravan W; Wang MD
    ACS Appl Mater Interfaces; 2019 Jul; 11(28):25074-25080. PubMed ID: 31274286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanostructure-enhanced laser tweezers for efficient trapping and alignment of particles.
    Wilson BK; Mentele T; Bachar S; Knouf E; Bendoraite A; Tewari M; Pun SH; Lin LY
    Opt Express; 2010 Jul; 18(15):16005-13. PubMed ID: 20720985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiplexed Near-Field Optical Trapping Exploiting Anapole States.
    Conteduca D; Brunetti G; Barth I; Quinn SD; Ciminelli C; Krauss TF
    ACS Nano; 2023 Sep; 17(17):16695-16702. PubMed ID: 37603833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards nano-optical tweezers with graphene plasmons: Numerical investigation of trapping 10-nm particles with mid-infrared light.
    Zhang J; Liu W; Zhu Z; Yuan X; Qin S
    Sci Rep; 2016 Dec; 6():38086. PubMed ID: 27905527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modular Assembly of Metamaterials Using Light Gradients.
    Paul A; Volk A; Hokmabadi M; Rigo E; Kermani H; Almonte-Garcia L; Finamore TA; Iwamoto KM; Roeder RK; Timp G
    Adv Mater; 2024 Jun; ():e2401344. PubMed ID: 38838094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Optical Properties of Ag-Al Nanosphere Heterodimer].
    Cheng L; Jiang YG; Huang LQ; Zhang Y; Wu J; Sun H; Liu Q; Wang J
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Nov; 36(11):3470-5. PubMed ID: 30198246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical trapping of NaYF4:Er3+,Yb3+ upconverting fluorescent nanoparticles.
    Haro-González P; del Rosal B; Maestro LM; Rodríguez EM; Naccache R; Capobianco JA; Dholakia K; Solé JG; Jaque D
    Nanoscale; 2013 Dec; 5(24):12192-9. PubMed ID: 24132346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.