These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 38145579)
1. Delineating the Impact of Transition-Metal Crossover on Solid-Electrolyte Interphase Formation with Ion Mass Spectrometry. Sim R; Su L; Dolocan A; Manthiram A Adv Mater; 2024 Apr; 36(14):e2311573. PubMed ID: 38145579 [TBL] [Abstract][Full Text] [Related]
2. Regulating Anode-Electrolyte Interphasial Reactions by Zwitterionic Binder Chemistry in Lithium-Ion Batteries with High-Nickel Layered Oxide Cathodes and Silicon-Graphite Anodes. Jin B; Dolocan A; Liu C; Cui Z; Manthiram A Angew Chem Int Ed Engl; 2024 Oct; 63(42):e202408021. PubMed ID: 39019796 [TBL] [Abstract][Full Text] [Related]
3. The Regulation of Solid Electrolyte Interphase on Composite Lithium Anodes in Solid-State Batteries. Wang ZY; Zhao CZ; Yao N; Lu Y; Xue ZQ; Huang XY; Xu P; Huang WZ; Wang ZX; Huang JQ; Zhang Q Angew Chem Int Ed Engl; 2024 Oct; ():e202414524. PubMed ID: 39384539 [TBL] [Abstract][Full Text] [Related]
4. Formation and Inhibition of Metallic Lithium Microstructures in Lithium Batteries Driven by Chemical Crossover. Li W; Kim UH; Dolocan A; Sun YK; Manthiram A ACS Nano; 2017 Jun; 11(6):5853-5863. PubMed ID: 28502161 [TBL] [Abstract][Full Text] [Related]
5. Impact of Electrolyte on Direct-Contact Prelithiation of Silicon-Graphite Anodes in Lithium-Ion Cells with High-Nickel Cathodes. Yi M; Cui Z; Manthiram A ACS Appl Mater Interfaces; 2024 Aug; 16(32):42270-42282. PubMed ID: 39099288 [TBL] [Abstract][Full Text] [Related]
6. Crossover Effects in Lithium-Metal Batteries with a Localized High Concentration Electrolyte and High-Nickel Cathodes. Langdon J; Manthiram A Adv Mater; 2022 Oct; 34(41):e2205188. PubMed ID: 35985644 [TBL] [Abstract][Full Text] [Related]
7. Delineating the Effects of Transition-Metal-Ion Dissolution on Silicon Anodes in Lithium-Ion Batteries. Torres RM; Manthiram A Small; 2024 Jul; 20(27):e2309350. PubMed ID: 38284325 [TBL] [Abstract][Full Text] [Related]
8. Impacts of Dissolved Ni Xu H; Li Z; Liu T; Han C; Guo C; Zhao H; Li Q; Lu J; Amine K; Qiu X Angew Chem Int Ed Engl; 2022 Jul; 61(30):e202202894. PubMed ID: 35441399 [TBL] [Abstract][Full Text] [Related]
9. Correlating Solid Electrolyte Interphase Composition with Dendrite-Free and Long Life-Span Lithium Metal Batteries via Advanced Characterizations and Simulations. Song L; Ning D; Chai Y; Ma M; Zhang G; Wang A; Su H; Hao D; Zhu M; Zhang J; Zhou D; Wang J; Li Y Small Methods; 2023 Jul; 7(7):e2300168. PubMed ID: 37148175 [TBL] [Abstract][Full Text] [Related]
10. Solvation Rule for Solid-Electrolyte Interphase Enabler in Lithium-Metal Batteries. Su CC; He M; Shi J; Amine R; Zhang J; Amine K Angew Chem Int Ed Engl; 2020 Oct; 59(41):18229-18233. PubMed ID: 32638459 [TBL] [Abstract][Full Text] [Related]
11. Reforming the Uniformity of Solid Electrolyte Interphase by Nanoscale Structure Regulation for Stable Lithium Metal Batteries. Zhang QK; Sun SY; Zhou MY; Hou LP; Liang JL; Yang SJ; Li BQ; Zhang XQ; Huang JQ Angew Chem Int Ed Engl; 2023 Oct; 62(42):e202306889. PubMed ID: 37442815 [TBL] [Abstract][Full Text] [Related]
12. Modification of Nitrate Ion Enables Stable Solid Electrolyte Interphase in Lithium Metal Batteries. Hou LP; Yao N; Xie J; Shi P; Sun SY; Jin CB; Chen CM; Liu QB; Li BQ; Zhang XQ; Zhang Q Angew Chem Int Ed Engl; 2022 May; 61(20):e202201406. PubMed ID: 35233916 [TBL] [Abstract][Full Text] [Related]
13. Self-Formed Hybrid Interphase Layer on Lithium Metal for High-Performance Lithium-Sulfur Batteries. Li G; Huang Q; He X; Gao Y; Wang D; Kim SH; Wang D ACS Nano; 2018 Feb; 12(2):1500-1507. PubMed ID: 29376330 [TBL] [Abstract][Full Text] [Related]
14. Solid Electrolyte Interphase on Lithium Metal Anodes. Shen Z; Huang J; Xie Y; Wei D; Chen J; Shi Z ChemSusChem; 2024 Jun; 17(11):e202301777. PubMed ID: 38294273 [TBL] [Abstract][Full Text] [Related]
15. Rigid-tough Coupling of the Solid Electrolyte Interphase Towards Long-Life Lithium Metal Batteries. Xu H; Sun C; Zhang S; Zhang H; Liu Z; Tang Y; Cui G ChemSusChem; 2023 Jun; 16(11):e202202334. PubMed ID: 36813750 [TBL] [Abstract][Full Text] [Related]
16. High-Safety and High-Voltage Lithium Metal Batteries Enabled by a Nonflammable Ether-Based Electrolyte with Phosphazene as a Cosolvent. Li Y; An Y; Tian Y; Wei C; Xiong S; Feng J ACS Appl Mater Interfaces; 2021 Mar; 13(8):10141-10148. PubMed ID: 33595288 [TBL] [Abstract][Full Text] [Related]
17. Resolving nanostructure and chemistry of solid-electrolyte interphase on lithium anodes by depth-sensitive plasmon-enhanced Raman spectroscopy. Gu Y; You EM; Lin JD; Wang JH; Luo SH; Zhou RY; Zhang CJ; Yao JL; Li HY; Li G; Wang WW; Qiao Y; Yan JW; Wu DY; Liu GK; Zhang L; Li JF; Xu R; Tian ZQ; Cui Y; Mao BW Nat Commun; 2023 Jun; 14(1):3536. PubMed ID: 37321993 [TBL] [Abstract][Full Text] [Related]
18. Hybrid Artificial Solid Electrolyte Interphase with Dendrite-Free Lithium Deposition and High Ion Transport Kinetics. Kim D; Mateti S; Yu B; Tanwar K; Cai Q; Jiang H; Fan Y; O'Dell LA; Chen Y ACS Appl Mater Interfaces; 2022 Nov; 14(47):52993-53006. PubMed ID: 36378571 [TBL] [Abstract][Full Text] [Related]
19. 3D Artificial Solid-Electrolyte Interphase for Lithium Metal Anodes Enabled by Insulator-Metal-Insulator Layered Heterostructures. Zhai P; Wang T; Jiang H; Wan J; Wei Y; Wang L; Liu W; Chen Q; Yang W; Cui Y; Gong Y Adv Mater; 2021 Apr; 33(13):e2006247. PubMed ID: 33630383 [TBL] [Abstract][Full Text] [Related]
20. Impact of the Transition Metal Dopant in Zinc Oxide Lithium-Ion Anodes on the Solid Electrolyte Interphase Formation. Eisenmann T; Asenbauer J; Rezvani SJ; Diemant T; Behm RJ; Geiger D; Kaiser U; Passerini S; Bresser D Small Methods; 2021 Apr; 5(4):e2001021. PubMed ID: 34927852 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]