BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38145614)

  • 1. Influence of biopolymer composition and crosslinking agent concentration on the micro- and nanomechanical properties of hydrogel-based filaments.
    Araujo Neto LA; Silva LP
    J Mech Behav Biomed Mater; 2024 Feb; 150():106316. PubMed ID: 38145614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Material properties in unconfined compression of gelatin hydrogel for skin tissue engineering applications.
    Karimi A; Navidbakhsh M
    Biomed Tech (Berl); 2014 Dec; 59(6):479-86. PubMed ID: 24988278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surfactant and metal ion effects on the mechanical properties of alginate hydrogels.
    Kaygusuz H; Evingür GA; Pekcan Ö; von Klitzing R; Erim FB
    Int J Biol Macromol; 2016 Nov; 92():220-224. PubMed ID: 27381586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogels based on gelatin, xanthan gum, and cellulose obtained by reactive extrusion and thermopressing processes.
    Pereira JF; Marim BM; Simões BM; Yamashita F; Mali S
    Prep Biochem Biotechnol; 2023; 53(8):942-953. PubMed ID: 36592021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-crosslinking effect of chitosan and gelatin on alginate based hydrogels: Injectable in situ forming scaffolds.
    Naghizadeh Z; Karkhaneh A; Khojasteh A
    Mater Sci Eng C Mater Biol Appl; 2018 Aug; 89():256-264. PubMed ID: 29752097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solvent types used for the preparation of hydrogels determine their mechanical properties and influence cell viability through gelatine and calcium ions release.
    Rosińska K; Bartniak M; Wierzbicka A; Sobczyk-Guzenda A; Bociaga D
    J Biomed Mater Res B Appl Biomater; 2023 Feb; 111(2):314-330. PubMed ID: 36056675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gelatin-based micro-hydrogel carrying genetically engineered human endothelial cells for neovascularization.
    Choi YH; Kim SH; Kim IS; Kim K; Kwon SK; Hwang NS
    Acta Biomater; 2019 Sep; 95():285-296. PubMed ID: 30710712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alginate/gelatin-based hybrid hydrogels with function of injecting and encapsulating cells in situ.
    Ren P; Wei D; Liang M; Xu L; Zhang T; Zhang Q
    Int J Biol Macromol; 2022 Jul; 212():67-84. PubMed ID: 35588977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical properties of gelatin nanoparticles in dependency of crosslinking time and storage.
    Weiss AV; Fischer T; Iturri J; Benitez R; Toca-Herrera JL; Schneider M
    Colloids Surf B Biointerfaces; 2019 Mar; 175():713-720. PubMed ID: 30612047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Influence of the stiffness of three-dimensionally bioprinted extracellular matrix analogue on the differentiation of bone mesenchymal stem cells into skin appendage cells].
    ; Zhang YJ; Li JJ; Yao B; Song W; Huang S; Fu XB
    Zhonghua Shao Shang Za Zhi; 2020 Nov; 36(11):1013-1023. PubMed ID: 33238684
    [No Abstract]   [Full Text] [Related]  

  • 11. Development of a new 3D bioprinted antibiotic delivery system based on a cross-linked gelatin-alginate hydrogel.
    Mirek A; Belaid H; Barranger F; Grzeczkowicz M; Bouden Y; Cavaillès V; Lewińska D; Bechelany M
    J Mater Chem B; 2022 Nov; 10(43):8862-8874. PubMed ID: 35980231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alginate-Gelatin Self-Healing Hydrogel Produced via Static-Dynamic Crosslinking.
    Cadamuro F; Ardenti V; Nicotra F; Russo L
    Molecules; 2023 Mar; 28(6):. PubMed ID: 36985823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable Hybrid Biopolymeric Hydrogel Scaffolds Based on Atomic Force Microscopy Characterizations for Tissue Engineering.
    Li M; Xi N; Wang Y; Liu L
    IEEE Trans Nanobioscience; 2019 Oct; 18(4):597-610. PubMed ID: 31217123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of operating parameters on the drug release and antibacterial performances of alginate fibrous dressings prepared by wet spinning.
    Lin HY; Wang HW
    Biomatter; 2012; 2(4):321-8. PubMed ID: 23507896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design, fabrication and characterization of oxidized alginate-gelatin hydrogels for muscle tissue engineering applications.
    Baniasadi H; Mashayekhan S; Fadaoddini S; Haghirsharifzamini Y
    J Biomater Appl; 2016 Jul; 31(1):152-61. PubMed ID: 26916948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical behaviour of alginate-gelatin hydrogels for 3D bioprinting.
    Giuseppe MD; Law N; Webb B; A Macrae R; Liew LJ; Sercombe TB; Dilley RJ; Doyle BJ
    J Mech Behav Biomed Mater; 2018 Mar; 79():150-157. PubMed ID: 29304429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterizing the micro-scale elastic modulus of hydrogels for use in regenerative medicine.
    Markert CD; Guo X; Skardal A; Wang Z; Bharadwaj S; Zhang Y; Bonin K; Guthold M
    J Mech Behav Biomed Mater; 2013 Nov; 27():115-27. PubMed ID: 23916408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Composite electrospun gelatin fiber-alginate gel scaffolds for mechanically robust tissue engineered cornea.
    Tonsomboon K; Oyen ML
    J Mech Behav Biomed Mater; 2013 May; 21():185-94. PubMed ID: 23566770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Click chemistry-based biopolymeric hydrogels for regenerative medicine.
    Li Y; Wang X; Han Y; Sun HY; Hilborn J; Shi L
    Biomed Mater; 2021 Mar; 16(2):022003. PubMed ID: 33049725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering a morphogenetically active hydrogel for bioprinting of bioartificial tissue derived from human osteoblast-like SaOS-2 cells.
    Neufurth M; Wang X; Schröder HC; Feng Q; Diehl-Seifert B; Ziebart T; Steffen R; Wang S; Müller WEG
    Biomaterials; 2014 Oct; 35(31):8810-8819. PubMed ID: 25047630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.