BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38145897)

  • 1. Modulation of immunosuppressive effect of rapamycin via microfluidic encapsulation within PEG-PLGA nanoparticles.
    Wu W; Liu R; Guo J; Hu Z; An C; Zhang Y; Liu T; Cen L; Pan Y
    J Biomater Appl; 2024 Feb; 38(7):821-833. PubMed ID: 38145897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic nanoprecipitation of PEGylated PLGA nanoparticles with rapamycin and performance evaluation.
    Guo J; Dai W; Wu W; Zhuang S; Zhang H; Cen L
    J Biomater Sci Polym Ed; 2024 Jun; 35(8):1197-1213. PubMed ID: 38421916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic preparation of PLGA microspheres as cell carriers with sustainable Rapa release.
    Zhu C; Yang H; Shen L; Zheng Z; Zhao S; Li Q; Yu F; Cen L
    J Biomater Sci Polym Ed; 2019; 30(9):737-755. PubMed ID: 30935290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Use of an Efficient Microfluidic Mixing System for Generating Stabilized Polymeric Nanoparticles for Controlled Drug Release.
    Morikawa Y; Tagami T; Hoshikawa A; Ozeki T
    Biol Pharm Bull; 2018; 41(6):899-907. PubMed ID: 29863078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation, evaluation, and
    Pan X; Liu S; Ju L; Xi J; He R; Zhao Y; Zhuang R; Huang J
    Drug Dev Ind Pharm; 2020 Nov; 46(11):1889-1897. PubMed ID: 32975456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formulation of tunable size PLGA-PEG nanoparticles for drug delivery using microfluidic technology.
    Mares AG; Pacassoni G; Marti JS; Pujals S; Albertazzi L
    PLoS One; 2021; 16(6):e0251821. PubMed ID: 34143792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PEG-PLGA copolymers: their structure and structure-influenced drug delivery applications.
    Zhang K; Tang X; Zhang J; Lu W; Lin X; Zhang Y; Tian B; Yang H; He H
    J Control Release; 2014 Jun; 183():77-86. PubMed ID: 24675377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adriamycin release from poly(lactide-coglycolide)-polyethylene glycol nanoparticles: synthesis, and in vitro characterization.
    Davaran S; Rashidi MR; Pourabbas B; Dadashzadeh M; Haghshenas NM
    Int J Nanomedicine; 2006; 1(4):535-9. PubMed ID: 17722284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic Manufacturing of Multitargeted PLGA/PEG Nanoparticles for Delivery of Taxane Chemotherapeutics.
    Martins C; Sarmento B
    Methods Mol Biol; 2020; 2059():213-224. PubMed ID: 31435924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-encapsulation of magnetic Fe
    Liang C; Li N; Cai Z; Liang R; Zheng X; Deng L; Feng L; Guo R; Wei B
    Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):4211-4221. PubMed ID: 31713444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced immunosuppressive effects of 3,5-bis[4(diethoxymethyl)benzylidene]-1-methyl-piperidin-4-one, an α, β-unsaturated carbonyl-based compound as PLGA-
    Arshad L; Jantan I; Bukhari SNA
    Drug Des Devel Ther; 2019; 13():1421-1436. PubMed ID: 31118577
    [No Abstract]   [Full Text] [Related]  

  • 12. Enhanced anti-proliferative and pro-apoptotic effects of metformin encapsulated PLGA-PEG nanoparticles on SKOV3 human ovarian carcinoma cells.
    Faramarzi L; Dadashpour M; Sadeghzadeh H; Mahdavi M; Zarghami N
    Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):737-746. PubMed ID: 30892093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elastin-based protein polymer nanoparticles carrying drug at both corona and core suppress tumor growth in vivo.
    Shi P; Aluri S; Lin YA; Shah M; Edman M; Dhandhukia J; Cui H; MacKay JA
    J Control Release; 2013 Nov; 171(3):330-8. PubMed ID: 23714121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic-assisted synthesis of multifunctional iodinated contrast agent polymeric nanoplatforms.
    Chiesa E; Greco A; Dorati R; Conti B; Bruni G; Lamprou D; Genta I
    Int J Pharm; 2021 Apr; 599():120447. PubMed ID: 33676989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of size-tunable sub-200 nm PLGA-based nanoparticles with a wide size range using a microfluidic platform.
    Bao Y; Maeki M; Ishida A; Tani H; Tokeshi M
    PLoS One; 2022; 17(8):e0271050. PubMed ID: 35925917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of three-arm block copolymer poly(lactic-
    Zhu X; Liu C; Duan J; Liang X; Li X; Sun H; Kong D; Yang J
    Int J Nanomedicine; 2016; 11():6065-6077. PubMed ID: 27895480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low molecular weight PEG-PLGA polymers provide a superior matrix for conjugated polymer nanoparticles in terms of physicochemical properties, biocompatibility and optical/photoacoustic performance.
    Abelha TF; Neumann PR; Holthof J; Dreiss CA; Alexander C; Green M; Dailey LA
    J Mater Chem B; 2019 Sep; 7(33):5115-5124. PubMed ID: 31363720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymer-lipid-PEG hybrid nanoparticles as photosensitizer carrier for photodynamic therapy.
    Pramual S; Lirdprapamongkol K; Svasti J; Bergkvist M; Jouan-Hureaux V; Arnoux P; Frochot C; Barberi-Heyob M; Niamsiri N
    J Photochem Photobiol B; 2017 Aug; 173():12-22. PubMed ID: 28554072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Albumin in the Microfluidic Synthesis of PEG-PLGA Nanoparticles.
    Poller B; Painter GF; Walker GF
    Pharm Nanotechnol; 2019; 7(6):460-468. PubMed ID: 31657694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alendronate-decorated biodegradable polymeric micelles for potential bone-targeted delivery of vancomycin.
    Cong Y; Quan C; Liu M; Liu J; Huang G; Tong G; Yin Y; Zhang C; Jiang Q
    J Biomater Sci Polym Ed; 2015; 26(11):629-43. PubMed ID: 25994241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.