These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
269 related articles for article (PubMed ID: 38145949)
1. AMGDTI: drug-target interaction prediction based on adaptive meta-graph learning in heterogeneous network. Su Y; Hu Z; Wang F; Bin Y; Zheng C; Li H; Chen H; Zeng X Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38145949 [TBL] [Abstract][Full Text] [Related]
2. A heterogeneous network-based method with attentive meta-path extraction for predicting drug-target interactions. Wang H; Huang F; Xiong Z; Zhang W Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35641162 [TBL] [Abstract][Full Text] [Related]
3. DTiGNN: Learning drug-target embedding from a heterogeneous biological network based on a two-level attention-based graph neural network. Muniyappan S; Rayan AXA; Varrieth GT Math Biosci Eng; 2023 Mar; 20(5):9530-9571. PubMed ID: 37161255 [TBL] [Abstract][Full Text] [Related]
4. GSL-DTI: Graph structure learning network for Drug-Target interaction prediction. E Z; Qiao G; Wang G; Li Y Methods; 2024 Mar; 223():136-145. PubMed ID: 38360082 [TBL] [Abstract][Full Text] [Related]
5. Metapath-aggregated heterogeneous graph neural network for drug-target interaction prediction. Li M; Cai X; Xu S; Ji H Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36592060 [TBL] [Abstract][Full Text] [Related]
6. DTI-HETA: prediction of drug-target interactions based on GCN and GAT on heterogeneous graph. Shao K; Zhang Y; Wen Y; Zhang Z; He S; Bo X Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35380622 [TBL] [Abstract][Full Text] [Related]
7. G-K BertDTA: A graph representation learning and semantic embedding-based framework for drug-target affinity prediction. Qiu X; Wang H; Tan X; Fang Z Comput Biol Med; 2024 May; 173():108376. PubMed ID: 38552281 [TBL] [Abstract][Full Text] [Related]
8. Drug-target interaction predication via multi-channel graph neural networks. Li Y; Qiao G; Wang K; Wang G Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34661237 [TBL] [Abstract][Full Text] [Related]
9. GSRF-DTI: a framework for drug-target interaction prediction based on a drug-target pair network and representation learning on a large graph. Zhu Y; Ning C; Zhang N; Wang M; Zhang Y BMC Biol; 2024 Jul; 22(1):156. PubMed ID: 39020316 [TBL] [Abstract][Full Text] [Related]
10. Graph-DTI: A New Model for Drug-target Interaction Prediction Based on Heterogenous Network Graph Embedding. Qu X; Du G; Hu J; Cai Y Curr Comput Aided Drug Des; 2024; 20(6):1013-1024. PubMed ID: 37448360 [TBL] [Abstract][Full Text] [Related]
11. Learning global dependencies and multi-semantics within heterogeneous graph for predicting disease-related lncRNAs. Xuan P; Wang S; Cui H; Zhao Y; Zhang T; Wu P Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36088549 [TBL] [Abstract][Full Text] [Related]
12. A Biological Feature and Heterogeneous Network Representation Learning-Based Framework for Drug-Target Interaction Prediction. Liu L; Zhang Q; Wei Y; Zhao Q; Liao B Molecules; 2023 Sep; 28(18):. PubMed ID: 37764321 [TBL] [Abstract][Full Text] [Related]
13. GraphormerDTI: A graph transformer-based approach for drug-target interaction prediction. Gao M; Zhang D; Chen Y; Zhang Y; Wang Z; Wang X; Li S; Guo Y; Webb GI; Nguyen ATN; May L; Song J Comput Biol Med; 2024 May; 173():108339. PubMed ID: 38547658 [TBL] [Abstract][Full Text] [Related]
14. iNGNN-DTI: prediction of drug-target interaction with interpretable nested graph neural network and pretrained molecule models. Sun Y; Li YY; Leung CK; Hu P Bioinformatics; 2024 Mar; 40(3):. PubMed ID: 38449285 [TBL] [Abstract][Full Text] [Related]
15. EmbedDTI: Enhancing the Molecular Representations via Sequence Embedding and Graph Convolutional Network for the Prediction of Drug-Target Interaction. Jin Y; Lu J; Shi R; Yang Y Biomolecules; 2021 Nov; 11(12):. PubMed ID: 34944427 [TBL] [Abstract][Full Text] [Related]
16. GCHN-DTI: Predicting drug-target interactions by graph convolution on heterogeneous networks. Wang W; Liang S; Yu M; Liu D; Zhang H; Wang X; Zhou Y Methods; 2022 Oct; 206():101-107. PubMed ID: 36058415 [TBL] [Abstract][Full Text] [Related]
17. Identifying drug-target interactions based on graph convolutional network and deep neural network. Zhao T; Hu Y; Valsdottir LR; Zang T; Peng J Brief Bioinform; 2021 Mar; 22(2):2141-2150. PubMed ID: 32367110 [TBL] [Abstract][Full Text] [Related]
18. Semi-supervised heterogeneous graph contrastive learning for drug-target interaction prediction. Yao K; Wang X; Li W; Zhu H; Jiang Y; Li Y; Tian T; Yang Z; Liu Q; Liu Q Comput Biol Med; 2023 Sep; 163():107199. PubMed ID: 37421738 [TBL] [Abstract][Full Text] [Related]
19. Learning Multi-Types of Neighbor Node Attributes and Semantics by Heterogeneous Graph Transformer and Multi-View Attention for Drug-Related Side-Effect Prediction. Xuan P; Li P; Cui H; Wang M; Nakaguchi T; Zhang T Molecules; 2023 Sep; 28(18):. PubMed ID: 37764319 [TBL] [Abstract][Full Text] [Related]
20. MHTAN-DTI: Metapath-based hierarchical transformer and attention network for drug-target interaction prediction. Zhang R; Wang Z; Wang X; Meng Z; Cui W Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36892155 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]