These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 38145949)

  • 21. DTI-HeNE: a novel method for drug-target interaction prediction based on heterogeneous network embedding.
    Yue Y; He S
    BMC Bioinformatics; 2021 Sep; 22(1):418. PubMed ID: 34479477
    [TBL] [Abstract][Full Text] [Related]  

  • 22. MHADTI: predicting drug-target interactions via multiview heterogeneous information network embedding with hierarchical attention mechanisms.
    Tian Z; Peng X; Fang H; Zhang W; Dai Q; Ye Y
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36242566
    [TBL] [Abstract][Full Text] [Related]  

  • 23. GIAE-DTI: Predicting Drug-Target Interactions Based on Heterogeneous Network and GIN-based Graph Autoencoder.
    Wang M; Lei X; Liu L; Chen J; Wu FX
    IEEE J Biomed Health Inform; 2024 Sep; PP():. PubMed ID: 39259623
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A heterogeneous network embedding framework for predicting similarity-based drug-target interactions.
    An Q; Yu L
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34373895
    [TBL] [Abstract][Full Text] [Related]  

  • 25. iGRLDTI: an improved graph representation learning method for predicting drug-target interactions over heterogeneous biological information network.
    Zhao BW; Su XR; Hu PW; Huang YA; You ZH; Hu L
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37505483
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An end-to-end heterogeneous graph representation learning-based framework for drug-target interaction prediction.
    Peng J; Wang Y; Guan J; Li J; Han R; Hao J; Wei Z; Shang X
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33517357
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Drug-target affinity prediction with extended graph learning-convolutional networks.
    Qi H; Yu T; Yu W; Liu C
    BMC Bioinformatics; 2024 Feb; 25(1):75. PubMed ID: 38365583
    [TBL] [Abstract][Full Text] [Related]  

  • 28. NGCN: Drug-target interaction prediction by integrating information and feature learning from heterogeneous network.
    Cao J; Chen Q; Qiu J; Wang Y; Lan W; Du X; Tan K
    J Cell Mol Med; 2024 Apr; 28(7):e18224. PubMed ID: 38509739
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Drug-disease association prediction using semantic graph and function similarity representation learning over heterogeneous information networks.
    Zhao BW; Su XR; Yang Y; Li DX; Li GD; Hu PW; Zhao YG; Hu L
    Methods; 2023 Dec; 220():106-114. PubMed ID: 37972913
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Drug-Target Prediction Based on Dynamic Heterogeneous Graph Convolutional Network.
    Xu P; Wei Z; Li C; Yuan J; Liu Z; Liu W
    IEEE J Biomed Health Inform; 2024 Nov; 28(11):6997-7005. PubMed ID: 39120984
    [TBL] [Abstract][Full Text] [Related]  

  • 31. edge2vec: Representation learning using edge semantics for biomedical knowledge discovery.
    Gao Z; Fu G; Ouyang C; Tsutsui S; Liu X; Yang J; Gessner C; Foote B; Wild D; Ding Y; Yu Q
    BMC Bioinformatics; 2019 Jun; 20(1):306. PubMed ID: 31238875
    [TBL] [Abstract][Full Text] [Related]  

  • 32. EDC-DTI: An end-to-end deep collaborative learning model based on multiple information for drug-target interactions prediction.
    Yuan Y; Zhang Y; Meng X; Liu Z; Wang B; Miao R; Zhang R; Su W; Liu L
    J Mol Graph Model; 2023 Jul; 122():108498. PubMed ID: 37126908
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Drug-target Affinity Prediction by Molecule Secondary Structure Representation Network.
    Tang Y; Li Y; Li P; Liu ZP
    Curr Med Chem; 2024 Feb; ():. PubMed ID: 38409701
    [TBL] [Abstract][Full Text] [Related]  

  • 34. MSH-DTI: multi-graph convolution with self-supervised embedding and heterogeneous aggregation for drug-target interaction prediction.
    Zhang B; Niu D; Zhang L; Zhang Q; Li Z
    BMC Bioinformatics; 2024 Aug; 25(1):275. PubMed ID: 39179993
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Meta-structure-based graph attention networks.
    Li J; Sun Q; Zhang F; Yang B
    Neural Netw; 2024 Mar; 171():362-373. PubMed ID: 38134599
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DTKGIN: Predicting drug-target interactions based on knowledge graph and intent graph.
    Luo Y; Duan G; Zhao Q; Bi X; Wang J
    Methods; 2024 Jun; 226():21-27. PubMed ID: 38608849
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Latent neighborhood-based heterogeneous graph representation.
    Xiao Y; Quan P; Lei M; Niu L
    Neural Netw; 2022 Oct; 154():413-424. PubMed ID: 35952539
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MCL-DTI: using drug multimodal information and bi-directional cross-attention learning method for predicting drug-target interaction.
    Qian Y; Li X; Wu J; Zhang Q
    BMC Bioinformatics; 2023 Aug; 24(1):323. PubMed ID: 37633938
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative analysis of network-based approaches and machine learning algorithms for predicting drug-target interactions.
    Jung YS; Kim Y; Cho YR
    Methods; 2022 Feb; 198():19-31. PubMed ID: 34737033
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Drug-target interaction prediction using knowledge graph embedding.
    Li N; Yang Z; Wang J; Lin H
    iScience; 2024 Jun; 27(6):109393. PubMed ID: 38952679
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.