These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 38145960)

  • 1. Interfacial Chemistry in Aqueous Lithium-Ion Batteries: A Case Study of V
    Hou X; Zhang L; Gogoi N; Edström K; Berg EJ
    Small; 2024 Jun; 20(23):e2308577. PubMed ID: 38145960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reliable Organic Carbonyl Electrode Materials Enabled by Electrolyte and Interfacial Chemistry Regulation.
    Lu Y; Ni Y; Chen J
    Acc Chem Res; 2024 Feb; 57(3):375-385. PubMed ID: 38240205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrolyte and Interphase Engineering of Aqueous Batteries Beyond "Water-in-Salt" Strategy.
    Xie J; Lin D; Lei H; Wu S; Li J; Mai W; Wang P; Hong G; Zhang W
    Adv Mater; 2024 Apr; 36(17):e2306508. PubMed ID: 37594442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rational Design of Electrode-Electrolyte Interphase and Electrolytes for Rechargeable Proton Batteries.
    Su Z; Guo H; Zhao C
    Nanomicro Lett; 2023 Apr; 15(1):96. PubMed ID: 37037988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling Insight into Battery Electrolyte Electrochemical Stability and Interfacial Structure.
    Borodin O; Ren X; Vatamanu J; von Wald Cresce A; Knap J; Xu K
    Acc Chem Res; 2017 Dec; 50(12):2886-2894. PubMed ID: 29164857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An "Ether-In-Water" Electrolyte Boosts Stable Interfacial Chemistry for Aqueous Lithium-Ion Batteries.
    Shang Y; Chen N; Li Y; Chen S; Lai J; Huang Y; Qu W; Wu F; Chen R
    Adv Mater; 2020 Oct; 32(40):e2004017. PubMed ID: 32876955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Electric-Field-Reinforced Hydrophobic Cationic Sieve Lowers the Concentration Threshold of Water-In-Salt Electrolytes.
    Zhou A; Zhang J; Chen M; Yue J; Lv T; Liu B; Zhu X; Qin K; Feng G; Suo L
    Adv Mater; 2022 Nov; 34(47):e2207040. PubMed ID: 36121604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into the solvation chemistry in liquid electrolytes for lithium-based rechargeable batteries.
    Xiao P; Yun X; Chen Y; Guo X; Gao P; Zhou G; Zheng C
    Chem Soc Rev; 2023 Jul; 52(15):5255-5316. PubMed ID: 37462967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interfacial Speciation Determines Interfacial Chemistry: X-ray-Induced Lithium Fluoride Formation from Water-in-salt Electrolytes on Solid Surfaces.
    Steinrück HG; Cao C; Lukatskaya MR; Takacs CJ; Wan G; Mackanic DG; Tsao Y; Zhao J; Helms BA; Xu K; Borodin O; Wishart JF; Toney MF
    Angew Chem Int Ed Engl; 2020 Dec; 59(51):23180-23187. PubMed ID: 32881197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water-in-Salt Electrolyte-Based Extended Voltage Range, Safe, and Long-Cycle-Life Aqueous Calcium-Ion Cells.
    Adil M; Ghosh A; Mitra S
    ACS Appl Mater Interfaces; 2022 Jun; 14(22):25501-25515. PubMed ID: 35637172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water and Salt Concentration-Dependent Electrochemical Performance of Hydrogel Electrolytes in Zinc-Ion Batteries.
    Zhu D; Li J; Zheng Z; Ye S; Pan Y; Wu J; She F; Lai L; Zhou Z; Chen J; Li H; Wei L; Chen Y
    ACS Appl Mater Interfaces; 2024 Apr; 16(13):16175-16185. PubMed ID: 38509690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trend of Developing Aqueous Liquid and Gel Electrolytes for Sustainable, Safe, and High-Performance Li-Ion Batteries.
    Ji D; Kim J
    Nanomicro Lett; 2023 Nov; 16(1):2. PubMed ID: 37930432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and Electrochemical Performance of the Orthorhombic V
    Tan X; Guo G; Wang K; Zhang H
    Nanomaterials (Basel); 2022 Jul; 12(15):. PubMed ID: 35893501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interfacial Model Deciphering High-Voltage Electrolytes for High Energy Density, High Safety, and Fast-Charging Lithium-Ion Batteries.
    Zou Y; Cao Z; Zhang J; Wahyudi W; Wu Y; Liu G; Li Q; Cheng H; Zhang D; Park GT; Cavallo L; Anthopoulos TD; Wang L; Sun YK; Ming J
    Adv Mater; 2021 Oct; 33(43):e2102964. PubMed ID: 34510582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimizing the Electrolyte Systems for Na
    He J; Tao T; Yang F; Sun Z
    ChemSusChem; 2022 Apr; 15(8):e202102522. PubMed ID: 35050553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low Concentration DMF/H
    Yuan X; Li Y; Zhu Y; Deng W; Li C; Zhou Z; Hu J; Zhang M; Chen H; Li R
    ACS Appl Mater Interfaces; 2021 Aug; 13(32):38248-38255. PubMed ID: 34344149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-Dimensional Electrolyte Design: Broadening the Horizons of Functional Electrolytes in Lithium Batteries.
    Qin M; Zeng Z; Cheng S; Xie J
    Acc Chem Res; 2024 Apr; 57(8):1163-1173. PubMed ID: 38556989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic Electrode-Electrolyte Intermixing in Solid-State Sodium Nano-Batteries.
    Nuwayhid RB; Kozen AC; Long DM; Ahuja K; Rubloff GW; Gregorczyk KE
    ACS Appl Mater Interfaces; 2023 May; 15(20):24271-24283. PubMed ID: 37167022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unraveling the Interphasial Chemistry for Highly Reversible Aqueous Zn Ion Batteries.
    Zhao X; Dong N; Yan M; Pan H
    ACS Appl Mater Interfaces; 2023 Jan; 15(3):4053-4060. PubMed ID: 36647681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.