BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38146091)

  • 1. Effect of pH, NaCl concentration, and mAb concentration of feed solution on the filterability of Planova™ 20N and Planova™ BioEX.
    Hashikawa-Muto C; Yokoyama Y; Hamamoto R; Kobayashi K; Masuda Y; Nonaka K
    Biotechnol Prog; 2024; 40(2):e3420. PubMed ID: 38146091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterizing the impact of pressure on virus filtration processes and establishing design spaces to ensure effective parvovirus removal.
    Strauss D; Goldstein J; Hongo-Hirasaki T; Yokoyama Y; Hirotomi N; Miyabayashi T; Vacante D
    Biotechnol Prog; 2017 Sep; 33(5):1294-1302. PubMed ID: 28556575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integration of Planova filters in manufacturing processes of biologicals improve the virus safety effectively: A review of publicly available data.
    Gröner A
    Biotechnol Prog; 2024; 40(1):e3398. PubMed ID: 37985214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New insights into the performance characteristics of the Planova-series hollow-fiber parvovirus filters using confocal and electron microscopy.
    Nazem-Bokaee H; Chen D; O'Donnell SM; Zydney AL
    Biotechnol Bioeng; 2019 Aug; 116(8):2010-2017. PubMed ID: 30982955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of antibody solution conditions on filter performance for virus removal filter Planova 20N.
    Hongo-Hirasaki T; Komuro M; Ide S
    Biotechnol Prog; 2010; 26(4):1080-7. PubMed ID: 20730765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of viral filtration performance of monoclonal antibodies based on biophysical properties of feed.
    Rayfield WJ; Roush DJ; Chmielowski RA; Tugcu N; Barakat S; Cheung JK
    Biotechnol Prog; 2015; 31(3):765-74. PubMed ID: 25919945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation and implementation of Planova™ BioEX virus filters in the manufacture of a new liquid intravenous immunoglobulin in China.
    Ma S; Pang GL; Shao YJ; Hongo-Hirasaki T; Shang MX; Inouye M; Jian CY; Zhu MZ; Yang HH; Gao JF; Xi ZY; Song DW
    Biologicals; 2018 Mar; 52():37-43. PubMed ID: 29434001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microscopic visualization of virus removal by dedicated filters used in biopharmaceutical processing: Impact of membrane structure and localization of captured virus particles.
    Adan-Kubo J; Tsujikawa M; Takahashi K; Hongo-Hirasaki T; Sakai K
    Biotechnol Prog; 2019 Nov; 35(6):e2875. PubMed ID: 31228338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of varying virus-spiking conditions on a virus-removal filter Planova™ 20N in a virus validation study of antibody solutions.
    Hongo-Hirasaki T; Yamaguchi K; Yanagida K; Hayashida H; Ide S
    Biotechnol Prog; 2011; 27(1):162-9. PubMed ID: 21312364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrity testing of Planova™ BioEX virus removal filters used in the manufacture of biological products.
    Sekine S; Komuro M; Sohka T; Sato T
    Biologicals; 2015 May; 43(3):186-94. PubMed ID: 25753822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leveraging bioanalytical characterization of fractionated monoclonal antibody pools to identify aggregation-prone and less filterable proteoforms during virus filtration.
    Isu S; Vinskus L; Silva D; Cunningham K; Elich T; Greenhalgh P; Sokolnicki A; Raghunath B
    Biotechnol Prog; 2024 Mar; ():e3451. PubMed ID: 38450976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of small-scale models to understand the impact of continuous downstream bioprocessing on integrated virus filtration.
    Lute S; Kozaili J; Johnson S; Kobayashi K; Strauss D
    Biotechnol Prog; 2020 May; 36(3):e2962. PubMed ID: 31945257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Filter made of cuprammonium regenerated cellulose for virus removal: a mini-review.
    Ide S
    Cellulose (Lond); 2022; 29(5):2779-2793. PubMed ID: 34840442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of viruses from human intravenous immune globulin by 35 nm nanofiltration.
    Troccoli NM; McIver J; Losikoff A; Poiley J
    Biologicals; 1998 Dec; 26(4):321-9. PubMed ID: 10403036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Achieving high mass-throughput of therapeutic proteins through parvovirus retentive filters.
    Bolton GR; Basha J; Lacasse DP
    Biotechnol Prog; 2010; 26(6):1671-7. PubMed ID: 20859931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Limits in virus filtration capability? Impact of virus quality and spike level on virus removal with xenotropic murine leukemia virus.
    Roush DJ; Myrold A; Burnham MS; And JV; Hughes JV
    Biotechnol Prog; 2015; 31(1):135-44. PubMed ID: 25395156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of filtration behavior using integrated column chromatography followed by virus filtration.
    Shirataki H; Yokoyama Y; Taniguchi H; Azeyanagi M
    Biotechnol Bioeng; 2021 Sep; 118(9):3569-3580. PubMed ID: 34032276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adapting virus filtration to continuous processing: Effects of product and process variability on filtration performance.
    Kozaili J; Rayfield W; Gospodarek A; Brower M; Strauss D
    Biotechnol Prog; 2024; 40(2):e3407. PubMed ID: 38146086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel approach to achieving modular retrovirus clearance for a parvovirus filter.
    Stuckey J; Strauss D; Venkiteshwaran A; Gao J; Luo W; Quertinmont M; O'Donnell S; Chen D
    Biotechnol Prog; 2014; 30(1):79-85. PubMed ID: 24123923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of ionic strength for X-MuLV inactivation by low pH treatment for monoclonal antibody purification.
    Daya J; Cusick V; Mattila J
    Biotechnol Bioeng; 2023 Jun; 120(6):1605-1613. PubMed ID: 36924035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.